
sonar
sonar Script Language Guide

Version 2.2
Status : for general use

Author : Fritz Leibundgut, L&G Software
© L&G Software 2017
1

2

Inhalt

Sprache 8

• Einführung 8
• Nomenklatur 9
• Sprachaufbau 9
• Anweisung (statement) 10
• Kommentare (comments) 10
• Gross- und Kleinschreibung 11
• Objekt Referenz (object reference) 11
• Das Einheitensystem 12
• Ein script öffnen und ausführen 12
• Ausdrücke (expressions) 13
• Bedingte Anweisungen (conditional statements) 14
• Schleifen (Loops) 15
• Funktionen 16
• Operatoren 17
• Eine spezielle Variable 18
• sonar script Limits 18

Rohdaten 19

• Einführung 19
• Point 19
• Line 19
• Arc 20
• Circle 20
• Polygon (konvex) 20
• Polyline 21
• Quadstrip 21
• Rohdaten Selektieren 21
• Rohdaten Löschen 22
• Rohdaten Gruppieren 22
• Rohdaten für ein Zahn- oder Kettenrad 23
• Rohdaten in Konturen umwandeln 23
• Rohdaten in eine Polyline umwandeln 24
• Rohdaten bewegen 24
• Rohdaten Importieren 24
• Rohdaten eine Orientierung geben 25
• Beispiel 25

Primitivkörper 27

• Einführung 27
• Sphere (Kugel) 27
3

• Cylinder (Zylinder) 28
• Zylinder mit abgerundeten Kanten 28
• Kegelstumpf, Kegel 28
• Rohr 29
• Rohr Segment 29
• Rohr Oberfläche (Tube Surface) 30
• Cuboid (Quader) 30
• Torus 31
• Torus Segment 31
• Prisma (konvex) 31
• Prisma (quadstrip) 32
• Prisma (Line-Arc) 32
• Twisted Prism (verdrehtes Prisma) 33
• Plane (Ebene) 34
• Rotational (Rotationskörper) 34
• Partieller Rotationskörper (Grid Segment) 34
• Grid Surface 36
• Grid Nachbearbeitung (Hilfsfunktionen) 37
• Sweep 37

Eigenschaften (Primitives) 38

• Ueberblick 38
• Winkelgeschwindigkeit (angular velocity) 39
• Dichte (density) 39
• Externe Kraft (external force) 39
• Unilaterale Reibung (unilateral friction) 40
• Masse (mass) 41
• Ext. Drehmoment (ext. moment of force) 41
• Trägheitsmoment (moment of inertia) 42
• Rotationsachsen einfrieren 42
• Räumlich fixierte Objekte 43
• Geschwindigkeit (velocity) 43
• Zylinder-Facette (bevel) 43
• Objekt Farbe 44
• Gruppenzugehörigkeit 44
• Objektname 45
• Sichtbarkeit 45
• Wireframe 45

Objekt-Interaktion 47

• Interaktionsregel Erzeugen 47
• Interaktionskonstante (interaction const.) 47
• Interaktionspunkte 48
• Interaktionsrichtung einschränken 49
• Interaktionsmethode (interaction method) 50
• Interaktionsart (interaction mode) 50

4

Variablen (Primitives) 51

• Ueberblick 51
• Position 52
• Schwerpunkt 52
• Distanz, Abstand 53
• Beschleunigung 53
• Winkelbeschleunigung 53
• Kraft 54
• Kollisionskraft 54
• Drehmoment 54
• Externes Drehmoment 55
• Widerstandsmoment 55
• Geschwindigkeit 55
• Winkelgeschwindigkeit 55
• Impuls 56
• Gesamtimpuls 56
• Drehimpuls 56
• Energie 56
• Zeit 57
• Zyklus 57
• Trigger 57

Operationen an Primitives 58

• Selektieren / Überblick 58
• eine weitere Referenzierungsart 59
• Bewegen (Translation) / Überblick 59
• Bewegen (Rotation) 60
• Bewegen (mit Objektmatrix) 60
• Kombinierte Bewegung 61
• Löschen 61
• Duplizieren 62

Links 63

• Erzeugen 63
• weitere Erzeugungsmethoden 64
• Ganze Objektgruppen Linken 65
• Link-Konstante setzen 65
• Eigenschaften setzen 66
• Biegefestigkeit 67
• Beispiel 67

Fixpunkte 69

• Erzeugen 69
• Selektieren 69
• Links an Fixpunkten 69
5

Gruppeneigenschaften 71

• Ueberblick 71
• Gruppennummer Erzeugen 71
• Einzelne Objekte zu Gruppe hinzufügen 72
• Gruppe zu Supergruppe hinzufügen 72
• Gruppeneigenschaften benutzen 72

Materialmodelle 74

• Ueberblick 74
• Materialmodell 75
• Elastizitätsmodul (young modulus) 75
• Streckgrenze (yield strength) 75
• Bruchspannung 76
• Dehngrenze (strain limit) 76
• Aktion bei Ueberlast 76
• Unbeschränkte Dehnung 77
• Funktionsparameter 77
• Vergleichspannungshypothese (yield model) 78

Kontrollsysteme 79

• Punktkurve 79
• Automatisches Kontrollsystem 80
• Zwangsbewegung (constraint movement) 81

Uebergeordnete Eigenschaften 82

• Gravitationsfeld Erzeugen 82
• globale Zustände ein/ausschalten 82
• globale Werte setzen 83

Halbfabrikate 84

• Seil (Blockmodell) 84
• Biegsamer Draht, Drahtfeder 85
• Biegsamer Drahtring 85
• Blattfeder 86
• physikal. Zug- oder Druckfeder 86
• Biegsames Rohr 86
• Schäkel (shackle) 87

Uebersicht ‘Macro Language’ in
alphabetischer Reihenfolge 88

Uebersicht Macro Language nach
Funktionsgruppen 94

• Rohdaten 94
6

• Primitives 94
• Primitive-Gruppen und Clusters 96
• Group- and Supergroup Operationen 97
• Links 97
• Control Systems 98
• Allg. Verwaltungsfunktionen 98
• Globale Eigenschaften 98
• Simulations-Steuerung 98
• Programm Steuerung 99
• Modul Cable 99
• Modul Chain 100
• Modul Profile 100
• Modul Particles 100
• Konstanten 100

Kontrollsystem Sprache 102

• Ueberblick 102
• Grammatik 102

Reservierte Worte 104
7

Sprache

Einführung

sonar script hat die Aufgabe ein komplettes sonar-Simulationsmodell mittels
niedergeschriebenen Anweisungen zu erzeugen. Statt dass der Benutzer ein
Modell mit Hilfe von grafisch-interaktiven Werkzeugen und Funktionen direkt
am Bildschirm zeichnet, definiert er denselben Vorgang mit einer Reihe von
Anweisungen, welche im Prinzip genau die gleichen Handlungen in Textform
festhalten. Das gesamte Modell, welches der Benutzer manuell am
Bildschirm zeichnen könnte, wird stattdessen in Textform in einer Datei
gespeichert. Dieses Vorgehen hat gegenüber der klassischen Definition oft
den Vorteil, dass Aenderungen oder Varianten eines Basismodells schneller in
einem Makro durchgeführt werden, statt an einem fertigen sonar-Modell. Ein
sonar script ist auch eine hervorragende Dokumentation eines Modells, weil
in ihm sämtliche geometrischen und physikalischen Einstellungen in
schriftlicher und übersichtlicher Form festgehalten werden.

sonar script’ ist eine universelle interpretierende Makro-, Kontrollsystem-
und Kommandosprache in Zusammenhang mit der sonar-Software.
‘interpretierend’ heisst, dass die Sprache zum Zeitpunkt der Ausführung von
einem Compiler übersetzt bzw. interpretiert wird. ‘sonar script’ wird folglich
nicht in eine Maschinensprache übersetzt bevor sie zur Ausführung gebracht
wird. Die sonar script-Sprache beinhaltet einen Scanner, einen Parser, einen
Interpreter und eine Syntaxanalyse. Wird ein sonar-script zur Ausführung
gebracht, dann wird das gesamte Script zuerst virtuell ausgeführt und auf
Fehler kontrolliert. Werden bei dieser Kontrolle keine Fehler entdeckt, dann
wird das Script effektiv zur Ausführung gebracht.

sonar Script files sind im Text-Format geschrieben, haben die Endung (.txt)
und können mit jedem textverarbeitenden Programm erstellt und verändert
werden. Besonders geeignet ist dafür das Windows-Systemprogramm ‘Editor’
welches auf jedem Windows Computer zur Verfügung steht.

sonar Script ist eine Sprache die evolutionär entstanden und gewachsen ist.
Der Sprache lag ursprünglich kein Plan zugrunde, welche reservierten Worte
in den Sprachschatz der Sprache aufgenommen werden sollen. Die Sprache
entstand und wuchs parallel während der Entwicklung der Software. Die
Sprache hatte aber von Anfang an das Konzept, einfach zu bleiben und wenn
immer möglich die gleiche Satzstruktur zu verwenden. Es bestand die
Absicht eine sehr einfache, leicht zu erlernende Sprache zu definieren,
welche jedermann, auch Nicht-Informatiker leicht verstehen kann. Es sollte
eine Sprache sein, welche gut lesbar und wenn möglich selbsterklärend ist.
In der Tat hat sonar script wenig zu tun mit einer ausgewachsenen
Programmiersprache. sonar script hat, wenn überhaupt, eher etwas zu tun
mit Kommandosprachen (command language) welche Computer auf einer
übergeordneten Ebene steuern. Der Sprachschatz von sonar script wird in
absehbarer Zeit auch nicht abgeschlossen sein. Oft, wenn neue Funktionen in
sonar implementiert werden, sind auch neue Sprachkonstrukte notwendig
um diese Vorgänge in script-Form festzuhalten.

sonar script ist in einem gewissen Sinn universell einsetzbar. In der sonar-
Umgebung wird die Sprache für verschiedene Zwecke eingesetzt:
8

• Makrosprache
• Control System Sprache
• Kommandosprache

Diese verschiedenen Anwendungsgebiete verwenden teilweise eigene
sachbezogene Wörter, aber die Grundstruktur der Sprache ist dieselbe.

Nomenklatur

In diesem Buch werden zur Unterscheidung verschiedener Sprachelemente
und zum besseren Verständnis unterschiedliche Schrifttypen verwendet. Es
gelten die folgenden Formatierungsregeln:

LANGUAGE ELEMENT

Reservierte Worte und entsprechende Anweisungen in der ‘sonar script’-
Sprache werden mit der Schrift COURIER dargestellt. Die Gross- und
Kleinschreibweise in dieser Schrift kann jedoch beliebig verwendet werden.

placeholder

Ein Platzhalter muss vom Benutzer durch ein reserviertes Wort aus einer
Auswahl von mehreren möglichen Worten ersetzt werden. Im weiteren
werden die folgenden speziellen Platzhalter verwendet:

bool : TRUE, FALSE, YES, NO, ON, OFF
int, integer : ganzzahliger Zahlenwert

float, double : (Fliesskommawert in einfacher oder doppelter Präzision)

[optional]

Rechteckige Klammern zeigen an, dass die darin enthaltenen
Sprachelemente nicht zwingend, sondern optional sind.

a | b | c

Senkrechte Trennstriche zwischen Sprachelementen haben die Bedeutung
des Wortes ‘oder’. Der Benutzer ist aufgefordert eines der aufgelisteten
Worte auszuwählen.

Sprachaufbau

Zu Beginn ein paar sonar script Anweisungen:

CREATE OBJECT (O1, SPHERE, 1, 1, 5, 2.4)
SET PROPERTY (O1, DENSITY, 7.8)
CREATE FIELD (GRAVITATION, 0, -1, 0, 9.81E-10)

Jeder Leser versteht, zumindest dem Sinn nach, was diese Anweisungen
ungefähr bedeuten könnten.

• Es wird ein Object vom Typ Kugel erzeugt
und zwar an der Position (1, 1, 5)
und mit dem Radius von 2.4

• Die Dichte dieses Objektes (O1) wird auf 7.8 festgesetzt
9

• Es wird ein Gravitationsfeld eingeschaltet 
in Richtung (0, -1, 0) 
und mit einem bestimmten Wert für die Gravitationsbeschleunigung.

Die Klammerausdrücke (1, 1, 5) und (0, -1, 0) sind Vektoren (x, y, z).

Aus diesen Beispielen wird bereits der grundsätzliche Aufbau von sonar script
Anweisungen deutlich. Dieser Aufbau zieht sich wie ein roter Faden durch die
gesamte sonar script Sprache hindurch

 Command Qualifier (parameterList)

 Was tun ? (mit Was und Wie genau ?)

Aus einer Reihe von Anweisungen (statements) dieser Form lassen sich
ganze Anweisungsblöcke bzw. Anweisungslisten zusammenstellen.

 statementList = statement
 statement
 statement
 
 statement

bekommt die Anweisungsliste nun noch eine Kopflinie, dann haben wir ein
‘sonar script’.

 BEGIN SCRIPT scriptName
 statementList

Dies ist ganz grob der Aufbau der sonar script Sprache. Eine sehr einfache
und pragmatische Sprache ohne Schnörkel, welche minimal und ohne
Umwege sagt was geschehen soll.

Anweisung (statement)

sonar script ist eine Linien-orientierte Sprache. Jede Anweisung endet mit
einer Zeilenschaltung (return). Umgekehrt markiert jede Zeilenschaltung das
Ende einer Anweisung. Die maximale Länge einer Anweisung beträgt 256
Zeichen. Genau genommen sind es 255 Zeichen plus die Zeilenschaltung.
Wird eine Programmzeile länger, dann wird der Ueberhang vom Interpreter
abgeschnitten und was übrigbleibt erzeugt wahrscheinlich eine
Fehlermeldung (syntax error). Die Anzahl Anweisungen die ein script haben
darf ist nicht begrenzt.

Kommentare (comments)

Wie in jeder Computersprache gibt es auch in sonar script die Möglichkeit,
den Text eines scipts mit Kommentaren zu versehen. Diese Kommentare
nehmen an der eigentlichen Ausführung nicht teil, sondern sind
Randbemerkungen des Autors für den Leser. Es sind Erklärungen die dem
Verständnis des Programms dienen. Nicht zuletzt sind es Erinnerungen an
sich selbst, damit man nach einem Jahr noch weiss, was die Anweisungen
bewirken sollen. Kommentare sind freiwillig, aber sehr empfohlen. Die
Eingangs angeschriebenen beispielhaften Anweisungen lassen sich mit dem
bisher gesagten wie folgt zu einem vollständigen script erweitern.
10

BEGIN SCRIPT myScript
-- eine Stahlkugel im freien Fall
---
CREATE OBJECT (O1, SPHERE, 1, 1, 5, 2.4)
SET PROPERTY (O1, DENSITY, 7.8) -- Dichte von Stahl
CREATE FIELD (GRAVITATION, 0, -1, 0, 9.81E-10)
-- end of script

Zwei Minuszeichen bezeichnen das Ende einer Anweisung. Alles was nach
den beiden Minuszeichen bis an das Ende der Linie noch kommt, wird
ignoriert. De Facto werden in einer Anweisung die beiden Minuszeichen und
der Rest der Linie abgeschnitten bevor die Linie interpretiert wird.
Kommentare dürfen folglich am Ende einer Anweisung angefügt werden oder
es dürfen auch eigentliche Kommentarlinien wie im Beispiel oben verwendet
werden. Beachten Sie, dass ein script auch leere Linien haben darf.

Gross- und Kleinschreibung

sonar script ist nicht sensitiv bezüglich der Gross- und Kleinschreibung. Die
Gross- und Kleinschreibung kann beliebig gemischt werden. Wörter die sich
nur in der Gross- und Kleinschreibung unterscheiden sind gleichwertig:

‘DENSITY’ = ‘density’ = ‘dEnSiTy’
‘O1’ = ‘o1’
‘9.81E-10’ = ‘9.81e-10’
usw.

Die Gross- und Kleinschreibung kann als weiteres Mittel zur Strukturierung
eines scripts benutzt werden. Eine häufig angewandte, gute Methode ist, alle
reservierten Worte des Systems in Grossbuchstaben anzuschreiben und
eigene Namensgebungen bzw. eigener Text mit der Kleinschreibung zu
verwenden.

Objekt Referenz (object reference)

Wir erzeugten im letzten script eine Kugel mit der Anweisung 
CREATE OBJECT (O1, SPHERE, 1, 1, 5, 2.4)
Der erste Parameter in dieser Anweisung heisst ‘O1’. Diese Abkürzung
bedeutet ‘Object 1’. Zur Erzeugung einer Kugel ist dieser Parameter an sich
nicht notwendig. Dieser Parameter hat viel mehr den Zweck eine Referenz
auf das soeben zu erzeugende Objekt zu schaffen. Wenn wir im weiteren
Verlauf an einem bestimmten Objekt noch zusätzliche Einstellungen
vornehmen oder weitere Eigenschaften setzen wollen, dann müssen wir in
der Lage sein, dem System mitzuteilen welches Objekt wir damit meinen.
Wir benötigen eine Referenzierung bzw. einen Namen für das betreffende
Objekt. Und genau dieser Name setzen wir beim Erzeugen der Kugel in
obiger Anweisung. Wir nennen die Kugel ‘O1’ oder ‘O16’. In der zweiten
Anweisung des letzten scripts, wo wir die Dichte setzten, benutzten wir
alsdann diese Referenz und sagten: “Setze die Dichte der Kugel mit dem
Namen ‘O1’ auf einen bestimmten Wert. 
Eine Objektreferenz gehorcht dem Syntax: ‘O’ & integer, also

O1, o2, o16, ...

Die ganze Zahl muss in folgendem Zahlenbereich liegen: [1..16383].
Genauso wie es Referenzierungen für Objekte gibt, gibt es auch welche für
andere Typen:
11

Elemente: E1, e2, ...
Konturen: C1, c2, ...
Objekte: O1, o2, ...
Links: K1, k2, ...
Fixpunkte: F1, f2, ...
Grid’s: G1, g2, ...
Aktuatoren: A1, a2, ...
Daempfer: D1, d2, ...


Das Einheitensystem

Die sonar-Software rechnet im sog. [cm-g-µs]-System. In Worten: im
Zentimeter-Gramm-Mikrosekunden-System. Weshalb dieses ungewöhnliche
Einheitensystem verwendet wird, hat etwas zu tun mit der numerischen
Integration der Basisgleichungen in sonar während der Simulation (Sehen
Sie dazu das sonar-Tutorial). Aus diesem Grund müssen in einem ‘sonar
script’ alle verwendeten Variablen in diesem Einheitensystem verwendet
werden. Es besteht die Absicht, dem Benutzer ein Tool in Form eines Dialogs
zur Verfügung zu stellen um bestimmte Zahlenwerte ‘ad hoc’ vom metrischen
in dieses ‘calculation’ System umzurechnen.

Für’s Erste wollen wir uns hier mit einem Beispiel begnügen. Im letzten
script-Beispiel benutzten wir die folgende Linie:
CREATE FIELD (GRAVITATION, 0, -1, 0, 9.81E-10)
Als letzter Parameter kommt in dieser Linie die Gravitationsbeschleunigung
auf der Erdoberfläche mit 9.81 m/s2 vor. Die Umrechnung in das sog.
‘calculation’-System geschieht in diesem Fall wie folgt:

9.81 m/s2 = 9.81 * 1E+2 cm / (1E+6 us)2 = 9.81E-10 cm/us2

und dieser Wert wurde in unserem script folglich verwendet.

Ein script öffnen und ausführen

Ein script wird in einem Textverarbeitungsprogramm geschrieben und
vorbereitet (z.B. im Systemprogramm EDITOR). Gespeichert wird das script
als Textfile mit der Endung (.txt)

Zurück in sonar_LAB befindet sich am rechten Rand des Bildschirms das
‘MacroTool’ mit einem eigenen Menu. Mit Hilfe dieses Menus öffnen wir unter
Verwendung des Standard File Dialogs das vorbereitete script mit

MacroTool / File / Open Macro

Ebenfalls über das Menu im Macro Tool sind wir in der Lage das script zur
Ausführung zu bringen:

MacroTool / Macro / Execute

Als Erstes überprüft das System allerdings das Makro auf mögliche
Syntaxfehler und beginnt mit der Ausführung des scripts erst dann, wenn der
Text diese Prüfung besteht. Andernfalls wird eine Fehlermeldung angezeigt
und ein Hinweis auf den Ort und die Ursache des Fehlers gemacht. Diese
Vorgehensweise schützt uns davor, dass das Programm mit der Erzeugung
von Objekten beginnt, hängen bleibt und uns eine unfertige Baustelle des
12

angestrebten Modells hinterlässt welches wir ohnehin nicht weiterverarbeiten
können und wollen. Dies wäre besonders dann hinderlich, wenn mehrere
scripts hintereinander aufgerufen und ausgeführt werden und plötzlich stellt
ein script die ganze Arbeit in Frage.

FIGURE 1. Eine Fehlermeldung nach der Auslösung des Menu-Befehls ‘Execute’

FIGURE 2., und die Programmlinie welche den Fehler verursacht hat, angezeigt im Kopfteil
des Macro-Windows (gelbe Linie)

Wie in der sog. gelben Linie angezeigt, wurde das zweite Wort in der
betreffenden Programmlinie als ‘OBJEKT’ statt als ‘OBJECT’ geschrieben.

Ausdrücke (expressions)

Ausdrücke sind Anweisungen die ein Resultat liefern. Im Gegensatz zu einer
Anweisung der Form ‘SET PROPERTY (O1, DENSITY, 7.8)’, wie wir sie
bereits benutzt haben, gibt es Ausdrücke der Form

POS.X(O14) - POS(O3) + 1.2 (expression)

oder

POS.X(O14) < 12.5 (boolean expression)

Der erste der beiden Ausdrücke liefert als Resultat einen Zahlenwert, der
zweite ein Ergebnis der Form ‘wahr’ oder ‘falsch’ (TRUE, FALSE), je nachdem
welchen Wert die X-Komponente der Position von Objekt Nr.14 im Moment
gerade hat. Dieser Wert kann sich im Laufe einer Simulation natürlich
ändern. Deshalb kann man mit einem sog. Bool’schen Ausdruck das
Eintreten eines bestimmten Ereignisses abfangen.
13

Bedingte Anweisungen 
(conditional statements)

Innerhalb eines scripts kann die Ausführung einzelner Linien oder ganzer
script-Segmente von gewissen Bedingungen abhängig gemacht werden. Die
Bedingungen sind sog. Bool’sche Ausdrücke welche ein Resultat der Form
(TRUE oder FALSE) liefern. Nur wenn dieser Test wahr ist werden die
nachfolgenden umschlossenen Anweisungen ausgeführt. Die Syntax einer
bedingten Anweisung sieht wie folgt aus:

Syntax: DO IF (boolean expression)
 statementList
END IF

‘DO IF’ und ‘END IF’ sind reservierte Wortkombinationen. Bedingte
Anweisungen können beliebig verschachtelt werden, d.h. die bedingten
Anweisungen können ihrerseits wieder Bedingungen enthalten.

Beispiel: DO IF (T < 0.5E+6) -- falls die Zeit T < 0.5s
 statementList
 DO IF (POS.X(o3) <= 10.2)
 statementList
 END IF
 statementList
END IF

Jede ‘DO IF’ Anweisung muss mit einer ‘END IF’ Linie abgeschlossen werden,
d.h. die Anzahl der ‘DO IF’- und ‘END IF’-Anweisungen in einem script ist
gleich. Andernfalls wird eine Fehlermeldung angezeigt.
14

Schleifen (Loops)

‘Loops’ sind ein wichtiges und unentbehrliches Mittel in einer
Programmiersprache. Mit ‘Loops’ sind wir in der Lage, sich wiederholende
script-Abschnitte mehrmals durchlaufen zu lassen und z.B. eine Kette von
sich wiederholenden Teilen zu erzeugen. Mit verschachtelten Loops
generieren wir einen dreidimensionalen Kugelhaufen, usw.

SyntaxLOOP FOR loopControl
 statementList
END FOR

Die sog. ‘loopControl’ bestimmt darüber, wie oft und mit welchen Indizes der
Loop durchlaufen wird. Kommt die Ausführung gemäss diesen Vorgaben
schliesslich an ein Ende, dann wird der nächste script-Abschnit, welcher der
Loop-Struktur nachfolgt, ausgeführt. Die ‘loopControl’ hat die folgende
Syntax:

SyntaxloopControl := (loopVariable, index start, index end, index step)

Das erste Mal wenn der Loop beginnt, wird die loopVariable auf den Wert
start gesetzt. Anschliessend wird die loopVariable mit jedem Durchgang um
den Wert step erhöht. Wird der Wert end überschritten, wird der Loop
abgebrochen. Am besten zeigt man das Ganze an einem Beispiel:

BeispielLOOP FOR (J, 0, 12, 1)
 statementList
 LOOP FOR (I, 1, 8, 2)
 statementList
 END FOR
 LOOP FOR (I, 0, 20, 1)
 statementList
 END FOR
 statementList
END FOR

Zu diesem Beispiel gibt es ein paar Bemerkungen zu machen.

• Der sog. J- Loop mit der loopVariable ‘J’ wird insgesamt 13 mal
durchlaufen

• Der erste I-Loop hingegen wird nur 4 mal abgearbeitet, und zwar der
Reihe nach für die Indizes (1, 3, 5, 7)

• Der zweite I-Loop, welcher 21 mal durchlaufen wird, verwendet die
gleiche loopVariable ‘I’ wie der vorangehende Loop. Das ist zulässig,
solange sich die Loops nicht gegenseitig in die Quere kommen und
redundant werden. So dürfte man anstelle des zweiten I-Loopes z.B. die
loopVariable ‘J’ nicht nochmals verwenden, denn die J-Variable ist an
dieser Stelle immer noch aktiv und noch nicht fertig abgearbeitet.

• Die loopVariablen dürfen innerhalb der statementList wieder als Variable
verwendet werden. So könnte es z.B. innerhalb eines ‘I’-Loops eine
Anweisung geben der Form:

 CREATE OBJECT (O1, SPHERE, I*2, J*2, 0, 0.3)

• Die Multiplikation der X- und Y-Koordinaten der Kugeln mit den
loopVariablen bewirkt, dass ein reguläres 2-dimensionales Netz von
Kugeln entsteht.
15

Funktionen

In der sonar script Sprache sind die folgenden Funktionen implementiert

mathematische
Funktionen

ABS (expression) Absolutbetrag
SQR (expression) Quadrat
SQRT (expression) Quadratwurzel
EXP (expression) Exponentialfunktion
LOG (expression) der natürliche Logarithmus
LOG10 (expression) der Logarithmus zur Basis 10

Trigonometrische
Funktionen

SIN (expression) Sinusfunktion
COS (expression) Cosinusfunktion
TAN (expression) Tangensfunktion
ASIN (expression) Arcussinus Funktion
ACOS (expression) Arcuscosinus Funktion
ATAN (expression) Arcustangens Funktion

Bool’sche Funktionen AND logische UND-Verknüpfung
OR logische ODER-Verknüpfung
NOT logische NICHT-Verknüpfung

Beispiel: LOOP FOR (J, 1, 12, 1)
 -- ein Kreis von 12 Kugeln
 -- Radius = 4
 -- 3.14 = 
 -- die folgende Anweisung ist auf einer Linie geschrieben.
 CREATE OBJECT (O1, SPHERE, 4*COS(J*3.14/6),
 4*SIN(J*3.14/6), 0, 0.5)
END FOR

Bemerkungen • Die trigonometrischen Funktionen nehmen als Argument einen Winkel im
Bogenmass entgegen und nicht in Winkelgrad.

• Zum obigen Beispiel: Da die SIN- und COS-Funktion immer eine Zahl im
Wertebereich von [-1 .. +1] zurückgibt, ergibt die Multiplikation dieser
Funktion mit der Zahl ‘4’ den Radius des Kreises, bzw. die ‘4’ ist der
Radius des Kreises. Das Winkelargument der SIN- und COS-Funktion
enthält den Indexzähler ‘J’. Daraus folgt, dass der Winkel in der betr.
Klammer mit jedem Durchgang des Loop’s entsprechend erhöht wird. Und
zwar jedesmal um /6. Wenn der Loop also 12 mal durchlaufen wird,
ergibt der Winkel beim letzten Durchgang = 12 * /6 = 2. Und das
wiederum ist gerade ein voller Kreis. Deshalb werden die 12 Kugeln auf
einen ganzen Kreis verteilt.

• An dieser Stelle kommt eine wichtige Frage auf. In einem ‘Loop’ wie oben
im letzten Beispiel angeschrieben wird in jedem Durchlauf eine neue
Kugel erzeugt und jedesmal bekommt diese Kugel den Namen bzw. die
Objekt-Referenz ‘O1’. Soll das heissen, dass diese Kugeln alle den
gleichen Namen haben? Die Antwort lautet: Nein, immer die letzte Kugel
die unter der Bezeichnung ‘O1’ erzeugt wurde heisst so. Alle anderen
Kugeln verlieren ihren Namen und sind in der weiteren Folge des scripts
nicht mehr auf diese Weise referenzierbar. Will man also jeder Kugel in
16

diesem ‘Loop’ noch gewisse Eigenschaften geben, dann macht man das
innerhalb des Loops, direkt nachdem eine Kugel erzeugt wurde und ihre
Referenz noch gültig ist. De Facto funktioniert das Ganze in der sonar
script Software so, dass intern eine Objektliste mit zugehörigen Objekt-
Nummern angelegt wird. Jedes erzeugte Objekt bekommt einen Eintrag
wo genau steht, welche Objekt-Nummer zu Objekt ‘O1’ gehört, usw. Wird
nun eine neue Kugel mit der Referenz ‘O1’ erzeugt, dann wird einfach der
alte Eintrag mit der neuen Objektnummer überschrieben. Wieder auf das
letzte Beispiel bezogen steht am Schluss, wenn der Loop an sein Ende
gekommen ist, in dieser Objektliste die Objekt-Nr. 12 neben dem Objekt-
Namen ‘O1’.

Operatoren

Die Sprache ‘sonar script’ kennt die folgenden Operatoren:

TABLE 1. Operatoren

Operator Operation, Typ Resultat

+ Addition Zahlenwert (double)

- Subtraktion Zahlenwert (double)

* Multiplikation Zahlenwert (double)

/ Division Zahlenwert (double)

< kleiner Booelan (TRUE, FALSE)

<= kleiner oder gleich Booelan (TRUE, FALSE)

>= grösser oder gleich Booelan (TRUE, FALSE)

> grösser Booelan (TRUE, FALSE)

== gleich, identisch Booelan (TRUE, FALSE)

<> ungleich Booelan (TRUE, FALSE)

() Klammerausdrücke werden zuerst ausgewertet

= Anweisung Wert Zuweisung an Variable

Operatoren RangfolgeSoweit nicht mit Klammerausdrücken näher spezifiziert werden die
Operationen in einem Ausdruck nach einer bestimmten Rangfolge
ausgeführt. Nach ihrer Priorität geordnet ist das die folgende Rangfolge:

TABLE 2. Rangfolge der Ausführung

Rangfolge,
Priorität

Operator Operation, Typ

1 () Klammerausdruck

2 - negatives Vorzeichen

3 * / Multiplikation, Division

4 + - Addition, Subtraktion

5 < <= >= > Vergleich

6 == <> Vergleich

Beispiel2*4+8/4 = 10
2*(4+8)/4 = 6
17

Eine spezielle Variable

Wir haben gelernt, wie man mit sog. Objekt-Referenzen andere Objekte, die
man vorher im gleichen Script erzeugt hatte, referenzieren und
wiederverwenden kann. Darüber hinaus haben wir gesehen, dass Objekte
allenfalls auch durch eine Selektion an einem bestimmten Raumpunkt
selektiert und weiterverwendet werden können. Hier kommt nun eine
weitere Methode hinzu, andere Objekte zu selektieren um sie in Funktionen
wiederzuverwenden, auch wenn diese in einem anderen script oder manuell
erzeugt wurden. Es ist die Selektion des letzten erzeugten Objektes. Dabei
ist es völlig egal, wie dieses erzeugt wurde. Es wird einfach das letzte Objekt
im Objekt-Speicher, so wie es auch im sog. ‘Object-Tool’ im Objekt-Ordner
eingetragen ist, selektiert.

Syntax SELECT OBJECT (LAST_OBJECT)

Die Funktion lässt auch zu, dass man Objekt-Nummer noch modifiziert,
indem man eine gewisse ganze Zahl subtrahiert:

Syntax SELECT OBJECT (LAST_OBJECT - n)

Zum Beispiel selektiert die folgende Anweisung das drittletzte Objekt in der
aktuellen Objektliste.

SELECT OBJECT (LAST_OBJECT - 2)

sonar script Limits

Die folgende Tabelle hält ein paar Grenzwerte der sonar-script
Implementierung fest.

TABLE 3. sonar script limits

max. statement length 255 characters

max. script lemgth unlimited (capacity of a Windows textfield)

max. number of references of a type 16383

max. number of nested loops

max. number of parameters in a script

max. number of open scripts 1

max. number of open models 1
18

Rohdaten

Einführung

Rohdaten sind meistens 2-dimensionale, in einzelnen Fällen auch 3-
dimensionale Zeichendaten. 2-dimensionale Rohdaten werden in den
häufigsten Fällen in der X-Y-Ebene (Front View) erzeugt. Die Z-Koordinaten
dieser Daten werden dann durchwegs auf Null gesetzt. Dies geschieht in
diesem Sinne auch in den folgenden Beispielen.
Auch importierte Rohdaten aus CAD-Programmen (z.B. DXF Daten) sind
reine Zeichendaten welche noch keine physikalische Bedeutung haben. Erst
durch die Weiterverarbeitung der Rohdaten zu 3-dimensionalen
physikalischen Objekten werden diese schliesslich zu dem was wir in einer
Simulation benötigen. In sonar kennen wir die folgenden Rohdaten-
Elemente:

• POINT
• LINE
• ARC
• CIRCLE
• POLYGON
• POLYLINE
• QUADSTRIP

Diese Basiselemente können so weit möglich zu komplexeren Strukturen
zusammengesetzt werden. Insbesondere machen wir in ‘sonar’ oft Gebrauch
von sog. LINE-ARC-Konturen.

Point

MakroCREATE ELEMENT (E1, POINT, x0, y0, z0)

E1: Element Referenz {e1, e2, e3, ...}
POINT: reserviertes Wort
x0, y0, z0: Koordinaten des Punktes p0

BeschreibungDer Punkt bekommt die globalen Koordinaten (x0, y0, z0).

Line

MakroCREATE ELEMENT (E1, LINE, x1, y1, z1, x2, y2, z2)

E1: Element Referenz {e1, e2, e3, ...}
LINE: reserviertes Wort
x1, y1, z1; x2, y2, z2: die Koordinaten von zwei Punkten p1, p2

BeschreibungDie Linie ist in der Tat eine Strecke welche durch zwei Endpunkte definiert
wird.
19

Arc

Makro CREATE ELEMENT (E1, ARC, x0,y0,z0, x1,y1,z1, x2,y2,z2, orient)

E1: Element Referenz {e1, e2, e3, ...}
ARC: reserviertes Wort
x0, y0, z0: Bogenzentrum p0
x1, y1, z1: Bogenanfangspunkt p1
x2, y2, z2: Bogenendpunkt p2
orient: orientation in contour (counterclockwise: 1; clockwise: -1). outer contour = 1; hole = -1.
default value = +1.

Beschreibung Der Bogen wird immer so interpretiert, dass er ausgehend vom Punkt p1 im
Gegenuhrzeigersinn in Richtung von p2 gezeichnet wird, unabhängig davon,
welcher der beiden Winkel (Winkel 1, Winkel 2) der kleinere ist. Anders
ausgedrückt, der Benutzer muss die beiden Punkte p1 und p2 so setzen,
dass diese Regel zutrifft. Der Radius des Kreisbogens wird als Länge der
Strecke p0-p1 bestimmt. Der Endpunkt p2 wird nur noch zur Bestimmung
des Endwinkels genutzt. Falls p2 nicht auf dem Bogenradius liegt, dann hat
dies keinen Einfluss auf den Radius des Bogens. Die letzte Variable ‘orient’
kann die Werte {1, -1} annehmen und legt schliesslich fest in welcher
Umlaufrichtung eine Kontour abgefahren wird. Im Normalfall und bei
äusseren Konturen ist orient = +1.

Circle

Makro CREATE ELEMENT (E1, CIRCLE, cx, cy, cz, nx, ny, nz, R)

E1: Element Referenz {e1, e2, e3, ...}
CIRCLE: reserviertes Wort
cx, cy, cz: Kreiszentrum p0
nx, ny, nz: homogener, Richtungsvektor senkrecht zur Kreisscheibe
R: Kreisradius

Beschreibung Als Erstes erzeugen wir eine Ebene durch den Ursprung. Die Richtung dieser
Ebene soll dabei durch einen Normalenvektor festgelegt werden, also einen
Vektor der seinen Fusspunkt im Ursprung hat und senkrecht auf der Ebene
steht. Dieser homogene Vektor wird durch die drei Koordinaten (nx, ny, nz)
vorgegeben. Damit ist die Ausrichtung der Ebene im Raum gegeben. Als
weiterer Schritt wird diese Ebene nun parallel verschoben, so dass sie durch
den Punkt (cx, cy, cz) verläuft. Damit ist die Kreisebene und das
Kreiszentrum im Raum vollständig definiert. Mit dem Kreisradius R ist
letztlich auch der Kreis in dieser Ebene bestimmt.

Polygon (konvex)

Makro CREATE ELEMENT (E1, POLYGON, n)
DATA(x1,y1,z1, ..., xi,yi,zi)
...
DATA(xj,yj,zj, ..., xn,yn,zn)

E1: Element Referenz {e1, e2, e3, ...}
POLYGON: reserviertes Wort
n: ganze Zahl = Anzahl Punkte des Polygons
xi, yi, zi ... : Koordinaten der Polygonpunkte

Beschreibung Die Daten werden in einer beliebigen Anzahl ‘DATA’-Linien angefügt. Es gilt
darauf zu achten, dass die Anzahl Punkte in den Datenlinien mit der
20

deklarierten Anzahl Punkte ‘n’ übereinstimmt. Im Weiteren müssen alle z-
Koordinaten gleich Null sein. Das folgende Beispiel zeichnet ein Achteck.

BeispielCREATE ELEMENT (E1, POLYGON, 8)
DATA(2, 1, 0, 1, 2, 0, -1, 2, 0)
DATA(-2, 1, 0, -2,-1, 0, -1,-2, 0)
DATA(1,-2, 0, 2,-1, 0)

Polyline

MakroCREATE ELEMENT (E1, POLYLINE, n)
DATA(x1,y1,z1, ..., xn,yn,zn)
...
DATA(xj,yj,zj, ..., xn,yn,zn)

E1: Element Referenz {e1, e2, e3, ...}
POLYLINE: reserviertes Wort
n: ganze Zahl = Anzahl Punkte der Polyline
xi, yi, zi ... : Koordinaten der Polylinepunkte

BeschreibungDie Daten werden in einer beliebigen Anzahl ‘DATA’-Linien angefügt. Es gilt
darauf zu achten, dass die Anzahl Punkte in den Datenlinien mit der
deklarierten Anzahl Punkte ‘n’ übereinstimmt. Im Weiteren müssen alle z-
Koordinaten gleich Null sein.

Quadstrip

MakroCREATE ELEMENT (E1, QUAD_STRIP, n)
DATA(x1,y1,z1, ..., xn,yn,zn)

E1: Element Referenz {e1, e2, e3, ...}
POLYLINE: reserviertes Wort
n: ganze Zahl = Anzahl Punkte der Polyline
xi, yi, zi ... : Koordinaten der Polylinepunkte

Beschreibung

1

2

3

4

5

6
7

8
9

10

Ein quadstrip ist wie der Name sagt ein Streifen bzw. eine Kette von
Vierecken. Es ist wichtig die richtige Nummerierung der Punkte einzuhalten,
so wie in nebenstehender Abbildung dargestellt. Die gesamte Punktzahl ist
geradzahlig. Im Weiteren müssen alle z-Koordinaten gleich Null sein.
Während ein Polygon nur konvexe Berandungen zulässt, sind mit einem
‘quadstrip’ auch konkave oder sogar aufgewickelte Strukturen möglich. Das
nachfolgende Beispiel zeigt einen einfachen Winkelprofil-Querschnitt,
welcher als Ausgangspunkt für eine Extrusion verwendet werden könnte.

BeispielCREATE ELEMENT (E1, QUAD_STRIP, 6)
DATA(0, 0, 0, 5, 0, 0, 5, 0.5, 0)
DATA(0.5, 0.5, 0, 0.5, 5, 0, 0, 5, 0)

Rohdaten Selektieren

MakroSELECT ELEMENT (E1)

E1: Element Referenz {e1, e2, e3, ...}
21

Beschreibung Für Mehrfachselektionen kann dieser Vorgang in einem Script mehrmals
hintereinander für verschiedene Referenznummern aufgerufen werden. Die
selektierten Elemente werden in den Ansichten entsprechend
gekennzeichnet.

Rohdaten Löschen

Makro CLEAR ELEMENT (E1 || SELECTION)

E1: Element Referenz {e1, e2, e3, ...}
SELECTION: (reserviertes Wort) -> some elements must be selected

Beschreibung Wir verwenden hier in ‘sonar script’ ausdrücklich das Kommando ‘CLEAR’ und
nicht ‘DELETE’ um Elemente zu Löschen. Das bedeutet, dass die gelöschten
Elemente nicht in die Zwischenablage übertragen und folglich auch nicht mit
‘PASTE’ wieder eingesetzt werden können. Das Löschen und wieder Einsetzen
von Rohdaten innerhalb eines scripts macht letztlich keinen Sinn und ist nicht
notwendig bzw. kann ggf. besser anders gelöst werden.

Makro CLEAR ALL

Diese Anweisung löscht alle was selektiert ist, wie auch immer sich die
Selektion zusammensetzt. Das können entweder nur Elemente oder eine
Kombination aus Elementen und Objekten sein.

Makro SET PROPERTY (E1, INUSE, bool)

E1: Element Referenz {e1, e2, e3, ...}
INUSE: reserviertes Wort
bool: bool’scher Wert {TRUE || FALSE)

Beschreibung Ein Element kann damit vorübergehend ausgeschaltet werden, indem man
die Funktion mit dem dritten Parameter ‘FALSE’ auf das referenzierte
Element anwendet. Wird das Modell anschliessend irgendwann gesichert,
dann ist das betreffende Element definitiv gelöscht. Andernfalls kann es zu
einem späteren Zeitpunkt mit dem Parameter ‘TRUE’ wieder reaktiviert
werden.

Rohdaten Gruppieren

Makro GROUP ELEMENTS (SELECTION || ALL)

SELECTION: (reserviertes Wort) -> some selected elements must be grouped
ALL: (reserviertes Wort) -> all elements in the model must be grouped

Beschreibung Der Gruppierungsprozess versucht entweder die selektierten oder alle
Elemente so weit als möglich zu gruppieren. Dies bedeutet nicht, dass die
betreffenden Elemente alle zu einer einzigen Gruppe zusammengefasst
werden. Elemente welche nahtlos aneinander passen werden in gleiche
Gruppen aufgenommen. Es wird versucht geschlossene Ketten von
Elementen zu bilden. Wo das nicht gelingt bleiben offene Ketten übrig. Die
Funktion fügt also lediglich zu Gruppen zusammen was zueinander passt.
Dabei werden ggf. mehrere oder sehr viele Gruppen gebildet, falls die
räumliche Anordnung der Elemente dies ergibt. Einzelne Elemente für die
keine Anschlusspartner gefunden werden, bleiben bei diesem ganzen
Vorgang frei bzw. werden nicht an Gruppen angefügt.
Beim Gruppierungsprozess spielt die Gruppierungstoleranz eine Rolle. Dies
ist ein Wert der darüber entscheidet, wie weit weg ein Anschlusspunkt eines
22

Elementes maximal sein darf, damit eine Verbindung der beiden Elemente
noch zustande kommt. Dieser Toleranzwert kann in den Präferenzen des
Prgramms eingestellt werden.

MakroUNGROUP ELEMENTS (SELECTION || ALL)

SELECTION: (reserviertes Wort) -> some selected elements must be grouped
ALL: (reserviertes Wort) -> all elements in the model must be grouped

BeschreibungUNGROUP ist die Umkehrfunktion von GROUP und löst die Gruppierung
wieder auf. Die betreffenden Elemente gehören anschliessend keiner Gruppe
mehr an und sind wieder frei. 
Statt eine bereits bestehende Anzahl von Elementen zu gruppieren, können
diese auch importiert werden mit folgender Anweisung:

Rohdaten für ein Zahn- oder Kettenrad

MakroCONCATENATE ELEMENTS (E1, RING, x0, y0, n)

E1 : Element Referenz {e1, e2, e3, ...} -> E1: Repräsentant eine Elementgruppe
RING : reserviertes Wort
x0, y0 : Bogen- oder Kreiszentrum p0 in der X-Y-Ebene (Front View)
n : Anzahl der Wiederholungen längs dem Bogen oder Kreis

BeschreibungDie Anweisung ist eine spezielle Funktion, welche sich wiederholende
Untergruppen von Elementen zu einer grösseren Gruppe zusammenschliesst.
Die Funktion wurde ursprünglich dazu geschaffen, einen einzelnen Zahn
eines Zahnrades zu einem ganzen Zahnrad zu erweitern. Die Funktion
erwartet als Input eine Gruppe von Elementen, ein Drehzentrum und die
Zähnezahl. Mit diesen Informationen trägt die Funktion das gegebene
‘Zahnbild’ bzw. die Elementgruppe längs einem Kreis gleichverteilt so oft ab,
wie die Zähnezahl angibt. Es liegt in der Verantwortung des Benutzers, das
Zahnbild bzw. die einzelnen Elemente geometrisch so auszulegen, dass diese
nahtlos aneinander passen, wenn die Gruppe dupliziert und um das
Drehzentrum gedreht wird.

Rohdaten in Konturen umwandeln

MakroCREATE CONTOUR_LINE_ARC(C1, E1 || SELECTION)

C1: Contour Referenz {c1, c2, c3, ...}
E1: Element Referenz {e1, e2, e3, ...}, Mitglied einer geschlossenen Gruppe von Elementen
SELECTION: (reserviertes Wort) -> eine geschlossene Gruppe von selektierten Elementen

BeschreibungEine referenzierte Gruppe oder eine Selektion von Elementen wird in eine
Kontur umgewandelt. Eine Kontur ist eine geschlossene Gruppe von
Elementen. Eine Kontur unterscheidet sich von einer Gruppe von Elementen
dadurch, dass die Elemente einer Kontur in einem gewissen Sinne ihre
Eigenständigkeit aufgeben und zusammen eine neue Datenstruktur bilden.
Die Kontur bekommt im sog. Objekt-Tool einen neuen Eintrag unter dem
Ordner ‘Contour’ während die Elemente aus dem ‘Elementen’-Ordner, wo sie
vorher eingetragen waren, verschwinden. Eine Kontur kann anschliessend
extrudiert werden

Konturen können als Einheit selektiert werden mit

MakroSELECT CONTOUR (C1)

C1: Contour Referent {c1, c2, c3, ...} die vorher gesetzt wurde
23

Rohdaten in eine Polyline umwandeln

Makro TRANSFORM ELEMENTS (E1, LINE_SEGMENTS, dL)
E1: Element Referenz {e1, e2, e3, ...} -> Mitglied einer geschlossenen Gruppe von Elementen
LINE_SEGMENTS: reserviertes Wort
dL: Länge der zu erzeugenden Streckenabschnitte der Polyline

Beschreibung Die Funktion war ursprünglich dazu gedacht, einen geschlossenen Pfad
bestehend aus Linien und Bogen in eine Polyline mit konstanten
Streckenlängen zu unterteilen um das Resultat als Basis für eine Kette zu
verwenden. Die Funktion kann natürlich im Rahmen dieser Funktionalität
auch für andere Aufgaben verwendet werden.
Die Funktion funktioniert sinngemäss ähnlich wie wenn der Navigator mit
dem Zirkel längs einer Kurve x-mal das Zirkelmass abträgt, um
herauszufinden wie lange es dauert bis er an einem bestimmten Zielpunkt ist
(diese Analogie ist für Leute die sich mit den Methoden vor dem
Computerzeitalter noch auskennen).

Rohdaten bewegen

Makro MOVE ELEMENT (E1 || SELECTION, MOVE_MATRIX, O1 || SELECTION)

E1: Element Referenz {e1, e2, e3, ...} oder eine Selektion von Elementen
MOVE_MATRIX : reserviertes Wort
O1 : eine Objekt Referenz oder ein selektiertes Objekt

Beschreibung Die Aufgabe dieser Anweisung besteht darin, ein Element oder eine Gruppe
von Elementen so im Raum zu drehen, wie es von der Drehmatrix eines
bereits vorhandenen und gedrehten Objektes vorgegeben wird. Die Funktion
dreht folglich das Element E1 mit der Matrix von Objekt O1.

Bemerkung Elemente werden in sonar kaum bewegt. In der Regel werden die Rohdaten
dort gezeichnet wo in der Folge die Objekte entstehen sollen, d.h. in der
Nullstellung der zukünftigen Objekte. Es sind schliesslich die Objekte selbst
die im Raum gedreht und verschoben werden, nachdem sie erzeugt wurden.

Rohdaten Importieren

Makro IMPORT COLLECTION_LINE_ARC (E1, FILENAME, "filename")

E1: Element Referenz {e1, e2, e3, ...}
FILENAME: reserviertes Wort
“filename”: Ein regulärer Filename zwischen Anführungs- und Schlusszeichen.

Beschreibung Das Resultat dieser Operation ist eine Gruppe von Elementen mit einer
neuen Gruppennummer. Die Referenz ‘E1’ zeigt dabei auf ein Element der
Gruppe. Die importierten Elemente sind noch nicht zu einer Kontur
zusammengefasst, so wie das im nächsten Abschnitt vorgeführt wird. Es
handelt sich einfach um eine Anzahl von Elementen mit einer gemeinsamen
Gruppennummer.

Makro IMPORT CONTOUR_LINE_ARC (C1, FILENAME, "filename")
C1: Contour Referent {c1, c2, c3, ...}
FILENAME: reserviertes Wort
“filename”: Ein regulärer Filename zwischen Anführungs- und Schlusszeichen.
24

BeschreibungDer Unterschied dieser Anweisung zur vorangehenden besteht darin, dass
letztere am Ende vom Typ ‘Contour’ ist. während im ersten Fall lediglich eine
Gruppe von Elementen vorliegt. Eine ‘Contour’ ist eine Weiterverarbeitung
von Elementen mit zusätzlichen Merkmalen und einem eigenen Eintrag im
‘Object Tool’.

syntaxIMPORT POLYLINE (E1, FILENAME, “filename”)

E1: zugewiesene Element Referenz {e1, e2, e3, ...}
FILENAME : reserviertes Wort
“filename”: vollständiger Dateipfad des Files. Gänsefüsschen müssen geschrieben werden.

BeschreibungEine Polyline bzw. eine durch Strecken verbundene Punktfolge wird geladen.
Die maximale Anzahl Punkte beträgt 4096. Das neue Element bekommt die
Elementreferenz wie im ersten Parameter angegeben.

Rohdaten eine Orientierung geben

BeschreibungBei der Weiterverarbeitung der Rohdaten in Objekte ist bei gewissen
Operationen nicht immer klar welche Seite die Innen- und welche die
Aussenseite ist. So gibt es z.B. Funktionen welche Gruppen von Elementen
zu Rotationsflächen umwandeln oder ähnliche Funktionen welche auch nicht
geschlossene Konturen, also einzelne Linien-Bogen-Gruppen, akzeptieren. In
diesen Fällen muss den betreffenden Funktionen bekannt gemacht werden,
welche Seite der Fläche innen und welche aussen ist. Der Benutzer hat die
Möglichkeit diese Information bereits in den einzelnen Elementen zu
speichern, indem er diesen einen Normalenvektor zuordnet.

SyntaxSET PROPERTY (E1, NORMALVECTOR, x1, y1, z1) -- LINE
SET PROPERTY (E1, NORMALDIRECTION, ±1) -- ARC

E1: Element Referenz {e1, e2, e3, ...}
NORMALVECTOR, NORMALDIRECTION: reservierte Worte
x1, y1, z1: Ein homogener Vektor welcher senkrecht auf einer Linie steht und nach ‘Aussen’ zeigt.
±1: Richtungsangabe der Aussenseite des Bogens: +1: zeigt vom Bogenzentrum Richtung Bogen.
-1: zeigt vom Bogen Richtung Bogenzentrum.

Beispiel

MakroIMPORT COLLECTION_LINE_ARC (E1, FILENAME, “C:\sonar\gear.txt°)
CONCATENATE ELEMENTS (E1, RING, 0, 0, 19)
UNGROUP ELEMENTS (ALL)
GROUP ELEMENTS (ALL)
CREATE ELEMENT (E2, CIRCLE, 0, 0, 0, 0, 0, 1.0, 1.25)
TRANSFORM ELEMENTS (E1, CONTOUR)

Das script importiert die Form eines einzelnen Zahn’s bestehend aus Linien
und Bogen. Die zweite Anweisung des scripts dupliziert diesen Zahn 19 mal
um das Zentrum herum. Anschliessend bewirkt die dritte Linie, dass die
ursprüngliche Gruppen-Eigenschaft des Zahnbildes, welche nun 19 mal
dupliziert wurde, aufgelöst wird. Beim Duplizieren bekam jede Zahnkopie
eine neue eigene Gruppennummer. Die dritte Linie hat also zur Folge, dass
sämtliche Elemente nun ungruppiert sind. Mit der vierten Linie gruppieren
wir schliesslich alle Elemente zu einer einzigen neuen Gruppe. Anschliessend
wird noch der Innenkreis erzeugt und zum Schluss wird die ganze Gruppe in
eine Contour umgewandelt.
25

26

Primitivkörper

Einführung

Primitivkörper sind die physikalischen Grundbausteine in ‘sonar’. Viele
Primitivkörper können auf direktem Weg mit einer Anweisung erzeugt
werden. Andere nehmen den Weg über die Rohdaten indem
Rohdatenkonturen extrudiert werden. Aus Primitivkörpern können später
durch Zusammensetzen und Verlinken komplexere Objekte erzeugt werden.
In sonar gibt es auch Funktionen die ihrerseits direkt komplexere Objekte
aus vielen Primitivkörpern erzeugen. Eine Zugfeder ist ein solches Beispiel.

Im Folgenden wird die Erzeugung jedes Primitivkörpers im Einzelnen
besprochen. Für gewisse Primitivkörper gibt es mehrere unterschiedliche
Anweisungen. Anweisungen, welche ein Objekt in einer einzigen Anweisung
auch gleich in eine gedrehte Raumlage bringen, sind oft nicht für jedermann
verständlich. Es ist manchmal nicht ganz trivial drei Drehungen um drei
verschiedene Achsen im Kopf zu addieren. Makros mit einer grossen Anzahl
solcher Drehungen sind schlecht leserlich. Aus diesem Grund bevorzugen
viele Benutzer mit Recht die Durchführung von mehreren einfacheren
Operationen von der Art:

1. Den Körper zuerst in der Nulllage definieren (ohne Drehungen und ohne
Translationen)

2. Den Körper mit mehreren einzelnen Drehungen um jeweils eine Achse in
die richtige Drehlage bringen.

3. Den Körper an die Raumposition verschieben (Translation)

Natürlich kann man jede Makro-Anweisung auch dazu benutzen einen Körper
in der unverdrehten Nulllage zu erzeugen, indem man die betreffenden
Parameter welche Drehungen und Translationen spezifizieren einfach auf Null
setzt.

Sphere (Kugel)

MakroCREATE OBJECT (o1, SPHERE, x0, y0, z0, R)

o1: Objekt Referenz {o1, o2, o3, ...}
SPHERE: reserviertes Wort
x0, y0, z0: Koordinaten des Kugelzentrums
R: Radius der Kugel

BeschreibungDie erzeugte Kugel befindet sich mit ihrem Kugelzentrum an den Koordinaten
x0, y0, z0. Eine Kugel ist in sonar eine analytisch exakte Kugeloberfläche,
d.h. die Kugel ist nicht segmentiert und wird nicht durch Flächen angenähert.
Eine rollende Kugel scheppert nicht in ‘sonar’.

Makro 2
(im Basismodul ev. nicht
vorhanden)

CREATE OBJECT (o1, PARTICLE_SPHERE, x0, y0, z0, R)

o1: Objekt Referenz {o1, o2, o3, ...}
PARTICLE_SPHERE: reserviertes Wort
x0, y0, z0: Koordinaten des Kugelzentrums
R: Radius der Kugel bzw. des Partikels
27

Cylinder (Zylinder)

Makro 1 CREATE OBJECT (o1, CYLINDER, x0, y0, z0, wx, wy, wz, R, dz)

o1: Objekt Referenz {o1, o2, o3, ...}
CYLINDER: reserviertes Wort
x0, y0, z0: Koordinaten des Zylinderzentrums
wx, wy, wz: Drehwinkel relativ zu den drei Koordinatenachsen (Drehungen um das
Zylinderzentrum)
R: Zylinderradius
dz: Zylinderlänge

Beschreibung 1. Erzeugung eines Zylinders mit der Zylinderachse auf der z-Achse. Der
Schwerpunkt des Zylinders befindet sich im Ursprung.

2. Ausgehend von dieser Raumlage wird der Zylinder um die gegebenen
Winkel um die drei Koordinatenachsen gedreht, und zwar in der
Reihenfolge x, y, z. Der Schwerpunkt des Zylinders befindet sich
anschliessend immer noch im Ursprung

3. Der Zylinder wird unter Beibehaltung seiner aktuellen Drehlage
translatorisch an seinen Bestimmungsort x0, y0, z0 verschoben.

Makro 2 CREATE OBJECT (o1, CYLINDER, x1, y1, z1, x2, y2, z2, R)

o1: Objekt Referenz {o1, o2, o3, ...}
CYLINDER: reserviertes Wort
x1, y1, z1 ; x2, y2, z2: Koordinaten der beiden Achsenendpunkte des Zylinders
R: Zylinderradius

Beschreibung 1. Die beiden Punkte (x1, y1, z1) und (x2, y2, z2) definieren die
Zylinderachse. Es wird ein Zylinder mit dem Radius R um die gegebene
Achse gelegt. Die beiden kreisförmigen Endscheiben des Zylinders haben
ihre Kreiszentren in den beiden gegebenen Punkten und stehen senkrecht
auf der Achse.

Zylinder mit abgerundeten Kanten

Makro Die Erzeugung eines Zylinders mit abgerundeten oder angeschrägten Kanten
(cylinder bevelled) geschieht durch Abändern eines normalen Zylinders bzw.
durch Setzen einer entspr. Eigenschaft für den betr. Zylinder.

SET PROPERTY (o1, BEVEL, {ROUND || FACETTE}, r)

o1: Objekt Referenz auf einen existierenden Zylinder {o1, o2, o3, ...}
BEVEL, ROUND, FACETTE: reservierte Wörter
r: Rundungsradius an der Kante bzw. Facettenbreite (r*45°)

Beschreibung Das Setzen dieser Eigenschaft ändert die scharfen Kanten eines Zylinders. Es
sind abgerundete oder angeschrägte Kanten möglich. Dazu setzt man den
gewünschten parameter ROUND oder FACETTE. Die angeschrägten Kanten
verstehen sich als Anschrägung um die Breite ‘r’ und um 45°.

Kegelstumpf, Kegel

Makro 1 CREATE OBJECT (o1, CONE, x0, y0, z0, wx, wy, wz, R, r, dz)

o1: Objekt Referenz {o1, o2, o3, ...}
CONE: reserviertes Wort
x0, y0, z0: Koordinaten des Zentrums. Das Zentrum ist die halbe Kegelstumpfhöhe.
wx, wy, wz: Drehwinkel relativ zu den drei Koordinatenachsen (Drehungen um das Zentrum)
28

R: grosser Kegelstumpfradius
r: kleiner Kegelstumpfradius
dz: Kegelstumpfhöhe

BeschreibungEinen Kegelstumpf kann man sich als einen veränderten Zylinder vorstellen,
bei dem der eine Endkreisradius verkleinert wird. Ein Kegel ist ein Spezialfall
des Kegelstumpfes mit r = 0.

1. Erzeugung eines Kegelstumpfes mit der Kegelachse auf der z-Achse. Der
Kegel zeigt mit seiner Spitze in Richtung positive z-Achse. Das Zentrum
des Kegelstumpfes befindet sich im Ursprung. Das Zentrum ist allerdings
nicht mit dem Schwerpunkt identisch, sondern befindet sich am Ort der
halben Kegelstumpfhöhe.

2. Ausgehend von dieser Raumlage wird der Kegelstumpf um die gegebenen
Winkel um die drei Koordinatenachsen gedreht, und zwar in der
Reihenfolge x, y, z. Das Zentrum des Kegelstumpfes befindet sich
anschliessend immer noch im Ursprung

3. Der Kegelstumpf wird unter Beibehaltung seiner aktuellen Drehlage
translatorisch an seinen Bestimmungsort x0, y0, z0 verschoben.

Makro 2CREATE OBJECT (o1, CONE, x1, y1, z1, x2, y2, z2, R, r)

o1: Objekt Referenz {o1, o2, o3, ...}
CONE: reserviertes Wort
x1, y1, z1 ; x2, y2, z2: Koordinaten der beiden Achsenendpunkte des Kegelstumpfes
R: grosser Kegelstumpfradius in Punkt (x1, y1, z1)
r: kleiner Kegelstumpfradius in Punkt (x2, y2, z2)

Beschreibung1. Die beiden Punkte (x1, y1, z1) und (x2, y2, z2) definieren die Kegelachse.
Es wird ein Kegelstumpf mit den Radien R und r um die gegebene Achse
gelegt. Die beiden kreisförmigen Endscheiben des Kegelstumpfes haben
ihre Kreiszentren in den beiden gegebenen Punkten und stehen senkrecht
auf der Achse.

Rohr

MakroCREATE OBJECT (o1, TUBE, x0, y0, z0, wx, wy, wz, R, r, dz)

o1: Objekt Referenz {o1, o2, o3, ...}
TUBE: reserviertes Wort
x0, y0, z0: Koordinaten des Rohrzentrums
wx, wy, wz: Drehwinkel relativ zu den drei Koordinatenachsen (Drehungen um das Rohrzentrum)
R: Rohr-Aussendurchmesser
r: Rohr-Innendurchmesser
dz: Rohrlänge

Beschreibung1. Erzeugung eines zylindrischen Rohrs mit der Rohrachse auf der z-Achse.
Der Schwerpunkt des Rohrs befindet sich im Ursprung.

2. Ausgehend von dieser Raumlage wird das Rohr um die gegebenen Winkel
um die drei Koordinatenachsen gedreht, und zwar in der Reihenfolge x, y,
z. Der Schwerpunkt des Rohrs befindet sich anschliessend immer noch im
Ursprung

3. Das Rohr wird unter Beibehaltung seiner aktuellen Drehlage translatorisch
an seinen Bestimmungsort x0, y0, z0 verschoben.

Rohr Segment

MakroCREATE OBJECT (o1, TUBE_SEGMENT, x1,y1,z1, x2,y2,z2, R,r,phi,ws)
29

o1: Objekt Referenz {o1, o2, o3, ...}
TUBE_SEGMENT: reserviertes Wort
x1, y1, z1 ; x2, y2, z2: Koordinaten der beiden Achsenendpunkte der Rohrachse
R: Rohr-Aussendurchmesser
r: Rohr-Innendurchmesser
phi: Azimutale Ausrichtung des Segmentmittelpunktes um die z-Achse [°]
ws: abs. Winkel des Rohrsegmentes längs dem Umfang (Segmentbreite) [°]

Beschreibung Man kann sich die Entstehung eines Rohrsegmentes wie folgt vorstellen: Wir
gehen von einem ganzen Rohr aus, wie es die entspr. Funktion erzeugt
(TUBE). Das Rohr ist längs der z-Achse ausgerichtet. Zuerst schneiden wir
aus dem Rohr in Längsrichtung einen Streifen heraus, welcher zur Rohrachse
einen Bogenwinkel = ws bildet. Der Rest des Rohres wird entfernt.
Anschliessend wird das verbliebene Segment um die Rohrachse bzw. die z-
Achse um den Winkel (phi) in die gewünschte Azimutlage gedreht. Das
resultierende Rohr ist immer noch unendlich lang, denn wir haben bislang
noch keine Längenangaben gemacht. Die Funktion beinhaltet die Angabe von
zwei Koordinaten (x1,y1,z1, x2,y2,z2), durch welche die Achse des
Rohres bzw. des daraus herausgeschnittenen Segmentes gehen soll. Mit zwei
Drehungen um die x- resp. y-Achse und einer Translation wird die Rohrachse
mitsamt Segment nun in die gewünschte Raumlage gedreht. Am Ende wird
das Segment senkrecht zu seiner Achse durch die beiden Endpunkte
abgeschnitten.

Rohr Oberfläche (Tube Surface)

Makro CREATE OBJECT (O1, TUBE_SURFACE, x0, y0, z0, wx, wy, wz, R, dz

o1: Objekt Referenz {o1, o2, o3, ...}
TUBE_SURFACE: reserviertes Wort
x0, y0, z0 ;
wx, wy, wz:
R: Rohr-Aussendurchmesser
dz: Rohrlänge

Beschreibung Eine Rohrfläche kann eine äussere begrenzende zylindrische Fläche sein
welche den Simulationsbereich begrenz. Man könnte dies zwar meistens
auch mit einem Rohr bewerkstelligen. Eine einfache Zylinderfläche ist aber
vom Rechenaufwand her gesehen einfacher und schneller. In dieser
Beziehung ist die Rohroberfläche verwandt mit der Ebene (PLANE) welche
dasselbe mit einer flachen Oberfläche macht.

Cuboid (Quader)

Makro 1 CREATE OBJECT (o1, CUBOID, x1, y1, z1, x2, y2, z2)

o1: Objekt Referenz {o1, o2, o3, ...}
CUBOID: reserviertes Wort
x1, y1, z1 ; x2, y2, z2: Koordinaten von 2 diagonal gegenüberliegenden Ecken in der Nullage

Beschreibung Mit dieser Anweisung wird ein Quader in einer unverdrehten Raumlage
erzeugt. Die Kanten des Quaders sind alle parallel zu den Koordinatenachsen.
Die beiden Punkte (x1,y1,z1) und (x2,y2,z2) definieren zwei diagonal
gegenüberliegende Eckpunkte des Quaders. Setzt man die Koordinaten x2 =
-x1, y2 = -y1, z2 = -z1, dann erhält man einen Quader in der Nulllage.

Makro 2 CREATE OBJECT (o1, CUBOID, x0, y0, z0, wx, wy, wz, dx, dy, dz)

o1: Objekt Referenz {o1, o2, o3, ...}
30

CUBOID: reserviertes Wort
x0, y0, z0: Koordinaten des Quaderzentrums
wx, wy, wz: Drehwinkel relativ zu den Koordinatenachsen (Drehungen um das Quaderzentrum)
dx, dy, dz: Kantenlängen des Quaders in der Nullage in Richtung der drei Koordinatenachsen

BeschreibungDiese Anweisung definiert einen Quader direkt in einer verdrehten Raumlage.
Zuerst wird ein Quader mit den Kantenlängen (dx,dy,dz) mit seinem
Schwerpunkt im Ursprung erzeugt (Nulllage). Anschliessend wird der Quader
mit den Winkeln (wx,wy,wz) um die drei Koordinatenachsen gedreht. Dabei
gilt es zu beachten, dass die Drehfolge um die drei Achsen gegeben ist.
Schliesslich findet eine Translation mit dem Vektor (x0,y0,z0) in die
endgültige Raumlage statt.

Torus

MakroCREATE OBJECT (o1, TORUS, R, r)

o1: Objekt Referenz {o1, o2, o3, ...}
TORUS: reserviertes Wort
R: mittlerer Ringradius des Torus
r: Radius des kreisförmigen Querschnitts des Ringes

BeschreibungDer Torus befindet sich, so wie er erzeugt wird, in seiner Nulllage. Die
Torusachse, d.h. die Richtung mit der man den Finger durch den Ring
stecken würde, ist identisch mit der z-Achse. Der Ringkreis mit dem Radius R
befindet sich in der x-y-Ebene des Koordinatensystems und das Zentrum
dieses Kreises ist mit dem Ursprung identisch. Das Programm erwartet, dass
R > 2r, d.h. dass der Torus tatsächlich ein Loch hat.

Torus Segment

MakroCREATE OBJECT (o1, TORUS_SEGMENT, R, r, phi)

o1: Objekt Referenz {o1, o2, o3, ...}
TORUS_SEGMENT: reserviertes Wort
R: mittlerer Ringradius des Torus
r: Radius des kreisförmigen Querschnitts des Ringes
phi: Bogenwinkel des Segmentes [°]

BeschreibungDie räumliche Lage des Torus-Segments entspricht derjenigen eines ganzen
Torus, aus dem ein Kuchenstück herausgeschnitten wird. Das Segment
befindet sich in seiner Nullage ausgemittet zur y-Achse, d.h. der
Schwerpunkt des Segments liegt auf der y-Achse und die beiden seitlichen
Begrenzungsflächen des Torus liegen je phi/2 links und rechts von der y-
Achse.

AnwendungEin Beispiel für eine Anwendung von Torus Segmenten ist die Zug- oder
Druckfeder, welche stückweise aus solchen Objekten zusammengesetzt wird.

Prisma (konvex)

MakroCREATE OBJECT (o1, PRISM, E1, EXTRUSION, dz) -- convex only

o1: Objekt Referenz {o1, o2, o3, ...}
PRISM, EXTRUSION: reserviertes Wort
E1: Element Referenz auf ein vorher erzeugtes konvexes Polygon
dz: Prismalänge (extrudierte Länge)
31

Beschreibung Für nicht-konvexe Prismen verweisen wir auf den Primitivkörper vom Typ
‘PRISM_QUAD_STRIP’. Der Definition eines Prismas geht die Erzeugung eines
(konvexen) Polygons voraus. Die Element-Definition hinterlässt eine
Referenz auf das betreffende Polygon, welche wir hier bei der Erzeugung des
Prismas einsetzen. Das Polygon muss in der x-y-Ebene liegen. Die Extrudier-
Richtung ist die z-Achse. Das erzeugte Prisma liegt mittig vor und hinter der
x-y-Ebene. Der Schwerpunkt liegt in der x-y-Ebene.

Beispiel CREATE ELEMENT (E8, POLYGON, n)
DATA(x1,y1,z1, ..., xi,yi,zi)
...
DATA(xj,yj,zj, ..., xn,yn,zn)
CREATE OBJECT (o1, PRISM, E8, EXTRUSION, dz)

Im Allgemeinen werden die Punkte des Polygons übersichtshalber in
mehreren ‘DATA’-Linien angeschrieben (z.B. 3 Punkte pro DATA-Anweisung).

Prisma (quadstrip)

Makro CREATE OBJECT (o1, PRISM_QUAD_STRIP, E1, EXTRUSION, dz)
o1: Objekt Referenz {o1, o2, o3, ...}
PRISM_QUAD_STRIP, EXTRUSION: reserviertes Wort
E1: Element-Referenz auf ein existierendes Polygon, welches sich als ‘quadstrip’ darstellen liess.
dz: Prismalänge (extrudierte Länge)

Beschreibung Ein ‘quadstrip’ ist ein Polygon bestehend aus einer Kette von aneinander
gereihten, planen Vierecken, welche zusammen eine gemeinsame, im allg.
nicht konvexe, äussere Hülle bilden. Der Name ‘quadstrip’ ist der openGL-
Grafik Software entnommen, welche diese Formelemente dazu benutzt um
durch Kombinationen komplexere Körper zu generieren. Nach dem konvexen
Polygon ist der ‘quadstrip’ die nächste Ausbaustufe um kompliziertere
Berandungen zu erzeugen. Auch der ‘quadstrip’ ist aber letztlich ein Polygon
und besteht folglich ausschliesslich aus geraden Streckenelementen längs
seiner Berandung. Radien können ggf. mit mehreren kleinen
Streckenelemente angenähert werden.

Das ‘quadstrip’-Polygon muss in der x-y-Ebene liegen. Die Extrudier-
Richtung ist die z-Achse. Das erzeugte Prisma liegt mittig vor und hinter der
x-y-Ebene. Der Schwerpunkt liegt in der x-y-Ebene.

Prisma (Line-Arc)

Makro CREATE OBJECT(o1, PRISM_LINE_ARC, E1 || SELECTION, EXTRUSION, dz)

o1: Objekt Referenz {o1, o2, o3, ...}
PRISM_LINE_ARC, SELECTION, EXTRUSION: reservierte Wörter
E1: Element-Referenz auf ein existierendes Element (LINE || ARC).
SELECTION: statt ein referenziertes Element soll ein selektiertes Element benutzt werden.

Beschreibung 1 Das referenzierte oder selektierte Element muss Mitglied einer
Elementgruppe sein, welche zusammen eine geschlossene Kontur bildet. Alle
Elemente müssen in der x-y-Ebene liegen. Die Kontur darf eine beliebige
Kombination von Linien und Bogen haben. Eine typische Anwendung ist z.B.
die Aussenkontur eines Zahnrades. Die Extrudier-Richtung ist die z-Achse.
Das erzeugte Prisma liegt mittig vor und hinter der x-y-Ebene. Der
Schwerpunkt liegt in der x-y-Ebene.
32

Eine Besonderheit dieser Funktion ist die Möglichkeit in einem Zug auch noch
Löcher in der Kontur zu definieren. Das folgende Beispiel definiert eine
Lasche einer Zahnkette mit 2 Löchern wie folgt:

Beispiel IMPORT CONTOUR_LINE_ARC(E1, FILENAME, "C:\Import\Lasche.txt")
CREATE ELEMENT(E2, CIRCLE, 0, 0, 0, 0, 0, 1.0, 0.1605)
CREATE ELEMENT(E3, CIRCLE, 0.792, 0, 0, 0, 0, 1.0, 0.1605)
DESELECT ALL
SELECT ELEMENT(E1)
SELECT ELEMENT(E2)
SELECT ELEMENT(E3)
CREATE OBJECT(O1, PRISM_LINE_ARC, SELECTION, EXTRUSION, 0.12)

FIGURE 3. Lasche einer Maschinen- oder Zahnkette

Die erste Anweisung lädt eine bereits vorhandene ‘Line-Arc’-Kontur welche
als Datei mit dem Namen Lasche.txt im Verzeichnis ‘C:\Import’ bereit steht.
In zwei weiteren Anweisungen wird diese Kontur mit zwei Kreisen ergänzt,
welche explizit gezeichnet werden. Anschliessend werden alle drei Elemente
selektiert und die Funktion zur Erzeugung des Prismas aufgerufen. Das
Resultat ist eine Lasche mit Löchern.

Beschreibung 2Die Funktion zur Erzeugung des Prismas (Prism Line-Arc) funktioniert also
so, dass der Funktion vorerst ein Verweis auf eine Kontur übergeben wird.
Diese erste Kontur ist immer die Aussenkontur des zu erzeugenden Prismas.
Wenn am Ende der Kontur weitere selektierte Elemente folgen, dann werden
diese immer als Löcher interpretiert, welche in der Kontur enthalten sein
sollten. Diese zusätzlichen Elemente sollten immer vom Typ ‘CIRCLE’ sein.
Grundsätzlich darf eine beliebige Anzahl von Kreisen folgen.

Twisted Prism (verdrehtes Prisma)

MakroTWIST OBJECT (o1 || SELECTION, Tx, Ty, Tz, dz)

o1: Objekt Referenz {o1, o2, o3, ...}
SELECTION: reserviertes Wort. Statt ein referenziertes Objekt soll ein selektiertes Objekt benutzt
werden.
Tx, Ty, Tz: Koordinaten eines Punktes im kartesischen Koordinatensystem
dz: Prismalänge (extrudierte Länge)

BeschreibungDie Funktion benutzt ein existierendes konvexes Prisma und verdreht dieses
nach Massgabe eines sog. Verdreh-Punktes. Der Verdrehpunkt (Tx,Ty,Tz) ist
ein Punkt im kartesischen Koordinatensystem, welcher wie folgt benutzt
wird. Die Funktion geht von der Nullposition des Prismas aus, dessen
Schwerpunkt im Ursprung liegt und dessen Frontseiten parallel zur x-y-
Ebene verlaufen. Das Prisma wurde bekanntlich längs der z-Achse extrudiert.
Die Funktion versucht nun das Prisma um die y-Achse zu verdrehen. Dazu
wird eine parallele Gerade zur x-Achse genommen und längs der y-Achse bis
zur Koordinate Ty verschoben. Anschliessend wird diese Gerade um die y-
Achse gedreht bis sie durch den gegebenen Punkt verläuft (Tx,Ty,Tz). Die x-
Achse und die verdrehte Gerade bilden so gesehen ein Geradenpaar welches
eine verdrehte Ebene im Raum festlegt.

Am besten stellt man sich einen ebenen Papierstreifen längs der y-Achse vor,
welcher an seinem unteren Ende festgehalten und an seinem oberen Ende
um die y-Achse verdreht wird. Die Verdrehung des Papierstreifens erfolgt
dabei gleichmässig längs der y-Achse. Das Resultat ist ein Propeller-ähnlicher
Papierstreifen.
33

Plane (Ebene)

Makro CREATE OBJECT (O1, PLANE, nx0, ny0, nz0, nx1, ny1, nz1)

o1: Objekt Referenz {o1, o2, o3, ...}
PLANE: reserviertes Wort
nx0, ny0, nz0, nx1, ny1, nz1: Fuss- und Kopf-Koordinate eines Normalenvektors auf der Ebene

Beschreibung Eine Ebene ist eine 2-dimensionale Struktur, welche den Modellbereich
einschränkt. Physikalisch wirkt eine Ebene wie eine Oberfläche eines 3D-
Körpers. Man kann sich eine Ebene deshalb auch als eine Seite eines
unendlich grossen Quaders vorstellen. Die Ebene wird durch einen
Normalenvektor definiert, welcher mit seinem Fusspunkt senkrecht auf der
Ebene steht. Der Vektor zeigt dabei in Richtung des benutzten Modellraums.
Mit 6 Ebenen könnte man z.B. einen quaderförmigen Hohlraum schaffen,
welcher ein Modell in alle Richtungen einschränkt.

Rotational (Rotationskörper)

Makro REVOLVE CONTOUR (O1, C1 || SELECTION)

o1: Objekt Referenz {o1, o2, o3, ...}
c1: Kontur Referenz
SELECTION: reserviertes Wort. Es soll ein selektiertes Element benutzt werden.

Beschreibung Die Funktion setzt voraus , dass vorab eine geschlossene Kontur (Line-Arc-
Contour) bereitgestellt wurde, welche den Querschnitt des zu erzeugenden
Rotationskörpers definiert. Dieser Profil-Querschnitt muss in der X-Y-Ebene
definiert sein, d.h. die z-Koordinaten der Punkte der Kontur sollen Null sein
(wie immer bei Rohdaten). Die Kontur wird so gezeichnet, als ob man sie
anschliessend um die X-Achse rotieren würde. Tatsächlich verschiebt das
System bei der Ausführung der Funktion die Kontur im Hintergrund
automatisch in die Z-Y-Ebene und rotiert sie um die Z-Achse. Es entsteht ein
Rotationskörper mit der Z-Achse als Rotationsachse.

Der Name ‘Kontur’ impliziert, dass es sich um eine geschlossene Kontur
handelt und die gruppierten Elemente (Linien, Bogen) bereits in eine
‘contour’ umgewandelt wurden. Die Kontur wurde selektiert bevor die
Funktion ‘REVOLVE’ aufgerufen wird. Zusammen besitzt die Funktion dann
genug Informationen, um die selektierte Kontur (Querschnitt) um die
Drehachse zu rotieren und zu einem Rotationskörper zu verarbeiten.

FIGURE 4. eine typische Anwendung eines Rotationskörpers ist ein Rad (hier ein Seilrad)

Partieller Rotationskörper (Grid Segment)

Makro REVOLVE ELEMENT (G1, SELECTION, GRID_ROT_CONTOUR, w1, w2, nNodes)

g1: Grid Referenz {g1, g2, g3, ...}
SELECTION: reserviertes Wort. Es soll ein selektiertes Element als Repräsentant eines Grids
benutzt werden.
GRID_ROT_CONTOUR: reserviertes Wort
w1, w2: Startwinke, Endwinkel [°]
nNodes: Anzahl Netzknoten pro 360° (die Anzahl wird autom. auf (w2-w1) Grad reduziert.

Beschreibung Die Idee hinter dieser Funktion ist die Folgende: Eine offene oder
geschlossene Linien-Bogen-Kontur wird in der X-Y-Ebene im richtigen
Abstand zur X-Achse definiert (Rohdaten werden immer in der X-Y-Ebene
34

definiert). Das System verschiebt die Kontur bei der Ausführung automatisch
in die Z-Y-Ebene und rotiert sie um die Z-Achse (sonar erzeugt
Rotationskörper immer um die Z-Achse). Die Rotation muss allerdings nicht
zu einer geschlossenen Ring-artigen Netzstruktur führen. Vielmehr werden
mit zwei weiteren Parametern ein Start- und ein Endwinkel angegeben. Es
entsteht auf diesem Weg ein Segment-artiges Gebilde, als ob man aus einem
Ring-Kuchen ein Stück herausschneiden würde. Der letzte Parameter gibt die
Anzahl der Zellen längs dem Umfang von 360° an. Die Funktion rechnet
diesen Wert automatisch um auf das definierte Segment und erzeugt die
reduzierte Anzahl von (w2-w1)/360 Gitterzellen im definierten
Winkelbereich.

Die erzeugte Rohdatenstruktur ist vom Typ ‘Grid’ und hat folglich lediglich
eine Oberfläche aber kein Volumen. Aus diesem Grund kann diese Struktur
anschliessend auch nur in ein raumfestes Oberflächenobjekt ohne Volumen
weiterverarbeitet werden. An den beiden Segment-Enden ist das Gebilde im
übrigen stirnseitig offen. Die Funktion erzeugt so gesehen nur den Mantel der
Oberfläche. Wird dieses ‘Rohdaten- Grid’ später in ein ‘Grid-Objekt’
umgewandelt, dann interagiert dieses Netz normal mit allen beweglichen
Objekten welche an diese Oberfläche anstossen. Im weiteren hat das ‘Grid’
eine Aussen- und Innenseite welche bei der Definition der Linien-Bogen-
Kontur mit sog. Normalenvektoren auf den Elementen spezifiziert wird. Die
Interaktion mit anderen Objekten funktioniert nur von der Aussenseite her.
Zuerst ein Beispiel:

BeispielBEGIN SCRIPT U-Profil_gebogen

-- Kontur ---
CREATE ELEMENT (E1, LINE, -1.333466, 24.65, 0, -1.333466, 21.95, 0)
SET PROPERTY (E1, NORMALVECTOR, -1, 0, 0)
CREATE ELEMENT (E2, LINE, -1.333466, 21.95, 0, -1.084034, 21.95, 0)
SET PROPERTY (E2, NORMALVECTOR, 0, -1, 0)
CREATE ELEMENT (E3, LINE, -1.084034, 21.95, 0, -1.021360, 24.15459, 0)
SET PROPERTY (E3, NORMALVECTOR, 1, 0, 0)
CREATE ELEMENT (E4, ARC, -0.8218658, 24.15046, 0, -0.8218661, 24.35, 0, -1.021360,
24.15459, 0, -1)
SET PROPERTY (E4, NORMALDIRECTION, -1)
CREATE ELEMENT (E5, LINE, -0.8218661, 24.35, 0, -0.6472, 24.35, 0)
SET PROPERTY (E5, NORMALVECTOR, 0, -1, 0)
CREATE ELEMENT (E6, LINE, -0.6472, 24.35, 0, -0.2472, 24.35, 0)
SET PROPERTY (E6, NORMALVECTOR, 0, -1, 0)
CREATE ELEMENT (E7, LINE, -0.2472, 24.35, 0, 0.2472, 24.35, 0)
SET PROPERTY (E7, NORMALVECTOR, 0, -1, 0)
CREATE ELEMENT (E8, LINE, 0.2472, 24.35, 0, 0.6472, 24.35, 0)
SET PROPERTY (E8, NORMALVECTOR, 0, -1, 0)
CREATE ELEMENT (E9, LINE, 0.6472, 24.35, 0, 0.8218661, 24.35, 0)
SET PROPERTY (E9, NORMALVECTOR, 0, -1, 0)
CREATE ELEMENT (E10, ARC, 0.8218658, 24.15046, 0, 1.021459, 24.15889, 0, 0.8218661,
24.35, 0, -1)
SET PROPERTY (E10, NORMALDIRECTION, -1)
CREATE ELEMENT (E11, LINE, 1.021459, 24.15889, 0, 1.117403, 21.95, 0)
SET PROPERTY (E11, NORMALVECTOR, -1, 0, 0)
CREATE ELEMENT (E12, LINE, 1.117403, 21.95, 0, 1.416534, 21.95, 0)
SET PROPERTY (E12, NORMALVECTOR, 0, -1, 0)
CREATE ELEMENT (E13, LINE, 1.416534, 21.95, 0, 1.416534, 24.65, 0)
SET PROPERTY (E13, NORMALVECTOR, 1, 0, 0)

-- create partial rotated grid (rawdata) ------------------------
GROUP ELEMENTS(ALL)
DESELECT ALL
SELECT ELEMENT(E1)
REVOLVE ELEMENT (G1, SELECTION, GRID_ROT_CONTOUR, 0, 25, 120)
-- das selektierte Elem. 'E1' wird um die Z-Achse gedreht
-- Es entsteht das Rohdaten-Grid mit der Referenz 'G1'
-- end of script
35

FIGURE 5. Das vom vorangehenden sonar Script erzeugte Rohdaten Grid und sein Aussehen nach
der Weiterverarbeitung mit der Funktion Import Grid(). Beachten Sie, dass in der 3D-Darstellung
rechts nur diejenigen Flächen in Erscheinung treten, welche von aussen her betrachtet werden.

Normalenvektoren der
Elemente

Die Datenstruktur der Elemente, speziell die der Linien und Bogen, lässt es
zu, dem betreffenden Element einen Normalenvektor zuzuordnen. Ein
Normalenvektor sitzt per Definition mit seinem Fusspunkt senkrecht auf dem
betreffenden Element und zeigt in Richtung nach Aussen.

Aussenseite

Innenseite

Aussenseite Aussenseite

Innenseite Innenseite

Normaldirection = -1Normaldirection = +1

Beachten Sie, wie im Beispiel oben angewendet, dass die Linien mit dem
Parameter ‘NORMALVECTOR’ gekennzeichnet werden, während die Bogen den
Parameter ‘NORMALDIRECTION’ benutzen. Diese Unterscheidung kommt von
daher, dass beim Bogen die Richtung des Normalenvektors längs dem Bogen
ständig ändert und man deshalb nicht von einem bestimmten
Normalenvektor sprechen kann. Aus diesem Grund spricht man beim Bogen
von einer positiven oder negativen Richtung in Bezug zum Radiusvektor des
Bogens.

Weiterverarbeitung des
Rohdaten-Grids

Ein Rohdaten-Grid nimmt wie alle anderen Rohdaten an den Simulationen
nicht teil. Damit ein Grid in die Lage versetzt wird, physikalisch zu wirken,
muss es in ein Objekt weiterverarbeitet werden. Sehen Sie dazu den
nächsten Abschnitt ‘Grid Surface’.

Grid Surface

Makro IMPORT GRID (G1, FILENAME, "filename", typeNr)

G1: Objekt Referenz {o1, o2, o3, ...} des erzeugten Grid-Objektes
FILENAME: reserviertes Wort
“filename”: Ein regulärer Filename zwischen Anführungs- und Schlusszeichen.
typeNr: Bezeichner für einen bestimmten grid-Typ

Beschreibung Eine Netzstruktur kann nicht direkt mit einem Befehl erzeugt werden,
sondern ist auf den Import einer Beschreibung der einzelnen Knoten des
Netzes angewiesen. Betreffend dieser Beschreibung gibt es mehrere
Methoden, diese Knotenstruktur und ihre Koordinaten festzulegen. Sehen Sie
dazu auch das user-manual.
Die Funktion importiert eine Rohdaten-Netzstruktur und wandelt diese in ein
physikalisches Objekt vom Typ ‘Grid’ um. Das Grid-Objekt ist schliesslich
eine raumfeste, unbewegliche Berandung welche mit allen Objekten normal
interagiert.
36

Grid Nachbearbeitung (Hilfsfunktionen)

In sonar-LAB gibt es einige Funktionen um Primitivkörper vom Typ ‘Grid’, wie
sie vorerst mit den Standardfunktionen erzeugt wurden, nachträglich zu
ändern. Es handelt sich meistens um sehr spezielle Funktionen für die
Durchführung bestimmter Aufgaben. Allerdings können mit diesen
Funktionen nur Rohdaten-Grids verändert und modifiziert werden. 

MakroDEFORM GRID (G1, ALIGNED, X || Y || Z, min, max)

g1: Grid Referenz {g1, g2, g3, ...}eines Rohdaten-Grids
ALIGNED: reserviertes Wort -> bedeutet in diesem Zusammenhang = fluchtend.
Y: Deformationsrichtung
min, max: Begrenzungen der Scheibe, aus der das Netz entfernt bzw. zurückgedrängt werden soll.

Beschreibungeine vorher erzeugte Grid-Struktur mittels der Funktion ‘REVOLVE SECTION
wird in eine bestimmte Hauptrichtung eingedrückt bzw. zurückgedrängt. Die
dabei betroffenen Grid-Bereiche werden dabei in Richtung Netzlinien
zurückversetzt.

MakroSET POINT (G1, hIdx, vIdx, X | Y | Z, double)

g1: Grid Referenz {g1, g2, g3, ...}
hIdx, vIdx: Knoten-Indizes des Netzes
X | Y | Z: Verschiebungsrichtung
double: Koordinatenwert

BeschreibungSET POINT (G1, hIdx, vIdx, x1, y1, z1)

g1: Grid Referenz {g1, g2, g3, ...}
hIdx, vIdx: Knoten-Indizes des Netzes
x1, y1, z1: Koordinatenwerte

Die Funktion ‘SET POINT’ erlaubt das nachträgliche Verschieben einzelner
Knotenpunkte in eine bestimmte Koordinatenrichtung. Während die erste der
beiden Funktionen den spezifizierten Punkt nur in eine bestimmte
Koordinatenrichtung verschiebt, setzt die zweite Funktion die Position auf
einen beliebigen räumlichen Punkt.

Sweep

MakroSWEEP CROSSSECTION(O1,SELECTION, POLYLINE || LINE_ARC, CIRCLE, R)

o1: Objekt Referenz {o1, o2, o3, ...}
SELECTION: reserviertes Wort. Es soll ein selektiertes Element benutzt werden.
POLYLINE || LINE_ARC: das selektierte Element ist eine Polyline oder eine Kombination von Linien
und Bogen.
CIRCLE: reserviertes Wort: der Querschnitt des ausgezogenen Profils ist ein Kreis.
R: der konstante Radius des Querschnittes

Beschreibung:Mit der Sweep Funktion lassen sich beliebig verbogene zylindrische Stangen
erzeugen. Ein zylindrisches Gebilde in Form eines Zapfenziehers wäre ein
Beispiel für ein solches Objekt. Ein Kneter in einer Knetmaschine wäre ein
weiteres Beispiel.
37

Eigenschaften (Primitives)

Die Eigenschaften der ‘Primitives’ lassen sich alle einzeln setzen und
aktivieren. Alle Eigenschaften sind vom Typ

SET PROPERTY (objectReference, parameterList)

Es gilt zu beachten, dass in einem script nur die Eigenschaften gesetzt
werden müssen, die erstens relevant sind und benutzt werden und zweitens
von den default-Eigenschaften abweichen. So ist z.B. die Anfangs-
geschwindigkeit eines Objektes per default für alle Koordinatenrichtungen
gleich Null. In der Regel ist das in Ordnung so, und muss nicht nochmals
explizit gesetzt werden.
Auch in allen folgenden Anweisungen gilt es zu beachten, dass das 
[cm-g-µs]-Einheitensystem strikte eingehalten wird.

Ueberblick

Physik SET PROPERTY (O1, ANGULAR_VELOCITY, {X|Y|Z}, double)
SET PROPERTY (O1, ANGULAR_VELOCITY, vx, vy, vz)
SET PROPERTY (O1, DENSITY, double)
SET PROPERTY (O1, FORCE_EXT, {X|Y|Z}, double)
SET PROPERTY (O1, FRICTION_UNILATERAL, double)
SET PROPERTY (O1, MASS, double)
SET PROPERTY (O1, MOMENT_FORCE_EXT, nx, ny, nz, double)
SET PROPERTY (O1, MOMENT_INERTIA, Ix, Iy, Iz)
SET PROPERTY (O1, MOMENT_INERTIA, FACTOR, double)
SET PROPERTY (O1, ROTATION_LOCKED, X|Y|Z, bool)
SET PROPERTY (O1, SIM_MEMBER, bool)
SET PROPERTY (O1, VELOCITY, {X|Y|Z}, double)

Interaktion SET PROPERTY (O1, C_INTERACT_LIN, double)
SET PROPERTY (O1, C_INTERACT_QUAD, double)
SET PROPERTY (O1, INTERACT_CONTROLPOINT, x1, y1, z1, bool)
SET PROPERTY (O1, INTERACT_DIRECTION, directionSpecifier)
SET PROPERTY (O1, INTERACT_METHOD, ELASTIC, double)
SET PROPERTY (O1, INTERACT_MODE, {ACTIVE,PASSIVE,NO_INTERACTION})

Allgemein SET PROPERTY (O1, BEVEL, ROUND || FACET, double)
SET PROPERTY (O1, COLOR_STD, integer)
SET PROPERTY (O1, COLOR_RGB, red, green, blue)
SET PROPERTY (O1, GROUP_NR, LAST_GROUP_NR)
SET PROPERTY (O1, NAME, “objectname”)
SET PROPERTY (O1, SUPERGROUP_NR, LAST_SUPERGROUP_NR)
SET PROPERTY (O1, TRANSPARENCY, integer)
SET PROPERTY (O1, VISIBILITY, bool)
SET PROPERTY (O1, WIREFRAME, bool)
38

Winkelgeschwindigkeit (angular velocity)

Syntax 1SET PROPERTY (O1, ANGULAR_VELOCITY, {X|Y|Z}, double)

o1: Objekt Referenz {o1, o2, o3, ...}
ANGULAR_VELOCITY: reserviertes Wort
{X|Y|Z}: Es wird eine Koordinatenrichtung gesetzt (X oder Y oder Z)
double: Fliesskommawert

Syntax 2SET PROPERTY (O1, ANGULAR_VELOCITY, vx, vy, vz)

o1: Objekt Referenz {o1, o2, o3, ...}
ANGULAR_VELOCITY: reserviertes Wort
vx, vy,vz: es werden alle 3 Koordinaten des Winkelgeschwindigkeitsvektors gesetzt
double: Fliesskommawert

BeschreibungDie Winkelgeschwindigkeit ist ein Vektor, welcher in der aktuellen Drehachse
des betreffenden Objektes liegt und dessen Länge den Betrag der
Winkelgeschwindigkeit angibt. Man kann sich vorstellen, dass dieser Vektor
im Schwerpunkt des Objektes angeheftet ist. Mit dieser Anweisung bekommt
entweder eine Komponente {X|Y|Z} oder der gesamte Vektor der
Winkelgeschwindigkeit des Referenzobjektes einen neuen Wert. Wird
lediglich eine Komponente des Winkelgeschwindigkeitsvektors neu gesetzt,
dann behalten die beiden anderen Komponenten den Wert den sie im
Moment haben.

BeispielSET PROPERTY(O7, ANGULAR_VELOCITY, -4.0E-6, 3.0E-6, 0)

Erzeugt wurde damit ein Winkelgeschwindigkeitsvektor in der X-Y-Ebene mit
einer Länge von 5.0E-6 rad/µs = 5.0 rad/s = 0.8 Umdrehungen/s. Sofern der
dargestellte Zylinder keine weiteren Verbindungen hätte und frei im Raum
schweben würde, hätte diese Initialisierung eine Taumelbewegung des
Zylinders zur Folge.

Dichte (density)

SyntaxSET PROPERTY (O1, DENSITY, double)

o1: Objekt Referenz {o1, o2, o3, ...}
DENSITY: reserviertes Wort
double: Fliesskommawert > 0

BeschreibungDie Funktion setzt die Dichte des referenzierten Objektes auf einen neuen
Wert. Weitere Variablen die von der Dichte abhängig sind, werden
automatisch neu berechnet (Masse, Trägheitsmoment).

BeispielSET PROPERTY (O34, DENSITY, 7.8)

Das Objekt welches in einem script als ‘O34’ benannt wurde, bekommt die
Dichte von Stahl, also 7.8 g/cm3.

Externe Kraft (external force)

SyntaxSET PROPERTY (O1, FORCE_EXT, {X|Y|Z}, double)

o1: Objekt Referenz {o1, o2, o3, ...}
FORCE_EXT: reserviertes Wort
39

{X|Y|Z}: Es wird eine Koordinatenrichtung gesetzt (X oder Y oder Z)
double: Fliesskommawert

Beschreibung Die Anweisung setzt einen Kraftbetrag für die sog. externe Kraft des
betreffenden Objektes in einer bestimmten Koordinatenrichtung. Durch zwei-
oder dreifache Anwendung dieser Anweisung für die anderen beiden
Koordinatenrichtungen kann auf diesem Weg auch eine beliebige vektorielle
Kraft definiert werden. Jedes Objekt bietet in seinem Speicher Platz für eine
beliebige, nicht näher spezifizierte externe Kraft, welche konstant und
vektoriell auf den Schwerpunkt des Objektes wirkt. Unabhängig davon,
welche räumliche Lage das Objekt im Moment auch haben mag, die
Wirkungsrichtung ist immer dieselbe und bezieht sich auf das feste globale
Koordinatensystem. Die hier gesetzte externe Kraft ist identisch mit der Kraft
gleichen Namens wie sie im Dialog ‘Object Properties’ manuell gesetzt
werden kann. Hier wie dort bleibt diese Kraft aktiv, bis sie durch eine andere
oder Null ersetzt wird. Die externe Kraft wird letztlich auch zusammen mit
dem Modell gespeichert.

Beispiel Eine typische und allgemeine Anwendung für eine konstante externe Kraft zu
finden ist nicht ganz einfach und eher problemabhängig. Deshalb zuerst, was
eine externe Kraft nicht ist. Sie ist kein Ersatz für eine Kraft, denn diese ist
von der Masse des Objektes abhängig (F = m*g). Man könnte aber eine
Störung als externe Kraft definieren, indem eine kleine externe Kraft wie eine
‘Drift’ immer in eine bestimmte Richtung zieht. 
Eine andere Anwendung ist eine externe Belastung mit einer bestimmten
Kraft, welche man auf eine elastische Struktur ausüben möchte. So könnte
man eine biegsamen elastischen Balken an einem Ende fest einspannen und
am anderen Ende mit einer konstanten Kraft belasten um dessen Verbiegung
zu messen.

In diesem Beispiel wäre der weisse Pfeil am Ende des Balkens ein wirkliches
physikalisches Objekt, welchem man zur Klarstellung die Form eines Pfeils
gegeben hätte. Der Pfeil wäre mit einem Link am letzten Element des
Balkens befestigt und besitzt in seinem Schwerpunkt eine externe Kraft,
welche ihn vertikal nach unten zieht.

Unilaterale Reibung (unilateral friction)

Syntax SET PROPERTY (O1, FRICTION_UNILATERAL, µ)

o1: Objekt Referenz {o1, o2, o3, ...}
FRICTION_UNILATERAL: reserviertes Wort
µ: linearer Reibungskoeffizient (Fliesskommawert >= 0)

Beschreibung Während sich eine bilaterale Reibung nur auf zwei einzelne, ausgewählte
Objekte bezieht, betrifft eine unilaterale Reibung ein einzelnes Objekt in
Verbindung mit allen anderen Objekten welche dieses Objekt berühren. Die
unilaterale Reibung kommt nach Prioritäten geordnet nach der bilateralen
Reibung an zweiter Stelle und vor der allgemeinen globalen Reibung.

• 1. bilaterale Reibung
40

• 2. unilaterale Reibung
• 3. globale Reibung

Das heisst in Worten, dass das Programm bei jeder Objekt-Begegnung zuerst
nachschaut ob eine bilaterale Regel für diese Paarung vorliegt. Wenn ja, dann
wird diese angewendet. Andernfalls wird in einem zweiten Schritt geprüft, ob
eines der beiden Objekte eine unilaterale Regel hat. Haben beide Objekte
eine unilaterale Regel, dann wird der Mittelwert genommen. Hat keines der
Objekte eine Regel, dann wird schliesslich die globale Reibung zur
Anwendung gebracht. All diese Reibungen kommen im Uebrigen nur dann
zur Wirkung, wenn die Reibung aktiviert wurde.

BeispielSET PROPERTY (O16, FRICTION_UNILATERAL, 0.14)

Für alle Objektpaarungen wo das Objekt mit der Referenznummer ‘O16’
beteiligt ist, wird ein Reibungskoeffizient von 0.14 angewendet.

Masse (mass)

SyntaxSET PROPERTY (O1, MASS, double)

o1: Objekt Referenz {o1, o2, o3, ...}
MASS: reserviertes Wort
double: Fliesskommawert > 0

BeschreibungDie Masse eines Objektes in Gramm. Alle Variablen welche von der Masse
abhängen werden in der Folge automatisch neu berechnet. Dazu gehören die
Dichte und das Trägheitsmoment.

Ext. Drehmoment (ext. moment of force)

SyntaxSET PROPERTY (O1, MOMENT_FORCE_EXT, nx, ny, nz, double)

o1: Objekt Referenz {o1, o2, o3, ...}
MOMENT_FORCE_EXT: reserviertes Wort
nx, ny, nz: die drei Komponenten eines Momentenvektors
double: Fliesskommawert > 0

BeschreibungDie drei Variablen (nx, ny, nz) bestimmen den Richtungsvektor beliebiger
Länge des Drehmomentes. Diese drei Vektor-Komponenten werden
anschliessend vom Programm automatisch auf einen Einheitsvektor
zurückskaliert welcher die Länge Eins besitzt. Dieser Vektor ist ein
Normalenvektor welcher im Objektschwerpunkt angeheftet ist und senkrecht
auf der Drehebene steht. Der letzte Parameter bestimmt letztlich den
eigentlichen Drehmomentbetrag während der Vektor (nx, ny, nz) nur die
Richtung vorgibt. Das definierte Drehmoment bleibt so lange wirksam, bis es
durch einen anderen Wert oder Null ersetzt wird. Das Drehmoment wird mit
dem Modell abgespeichert.

BeispielSET PROPERTY (O4, MOMENT_FORCE_EXT, 0, 0, 1, 1.25E-5)

Der Drehmomentvektor zeigt in Richtung der Z-Achse und hat den Wert von
1.25E-5 [g cm2/µs2], was umgerechnet 1.25 Nm im metrischen System
entspricht.
41

Trägheitsmoment (moment of inertia)

Syntax SET PROPERTY (O1, MOMENT_INERTIA, Ix, Iy, Iz)

o1: Objekt Referenz {o1, o2, o3, ...}
MOMENT_INERTIA: reserviertes Wort
Ix, Iy, Iz: die drei Komponenten des Trägheitsmoments des Objektes

Beschreibung Die Anweisung berechnet und setzt die drei Massen- und Form-abhängigen
Komponenten des Massenträgheitsmoments für das Objekt welches mit der
Referenz ‘O1’ erzeugt wurde.

Beispiel Für einen Quader mit der Masse m und den Kantenlängen a, b und c würden
für das Trägheitsmoment die folgenden Werte gesetzt:

Ix = m(b2+c2)/12, Iy = m(a2+c2)/12, Iz = m(a2+b2)/12

Syntax SET PROPERTY (O1, MOMENT_INERTIA, FACTOR, double)

o1: Objekt Referenz {o1, o2, o3, ...}
MOMENT_INERTIA: reserviertes Wort
FACTOR: reserviertes Wort
double: ein Multiplikationsfaktor > 0 für das Trägheitsmoment des Objektes

Beschreibung Ein bereits gesetztes Trägheitsmoment kann zu einem späteren Zeitpunkt
modifiziert werden, indem es mit einem positiven Faktor multipliziert wird.
Diese Funktion macht Sinn für Untersuchungen mit unterschiedlichen
Trägheiten ohne sich vorerst auf bestimmte Materialien festlegen zu wollen.
Auch in Zusammenhang mit Toleranzauswirkungen kann diese Funktion zur
Anwendung kommen.

Rotationsachsen einfrieren

Syntax SET PROPERTY (O1, ROTATION_LOCKED, {X|Y|Z}, bool)

o1: Objekt Referenz {o1, o2, o3, ...}
ROTATION_LOCKED: reserviertes Wort
{X|Y|Z}: Es wird eine Koordinatenrichtung gesetzt (X oder Y oder Z)
bool: TRUE oder FALSE (für aktivieren oder deaktivieren)

Beschreibung Mit dieser Funktion wird eine einzelne lokale Rotationsachse eines
bestimmten Objektes ‘eingefroren’. Dies bedeutet, dass das Objekt um die
betreffende Achse keinerlei Rotationen mehr durchführt. Die anderen Achsen
des Objektes bleiben aber aktiv, sofern für diese nicht die gleichen
Einschränkungen gesetzt wurden. Das Wort ‘lokal’ ist in diesem
Zusammenhang wichtig.

Beispiel Nehmen wir an, in einem Zylinder, wie abgebildet, werden die X- und die Y-
Achse eingefroren, In der Folge kann sich dieser nur noch um die Z-Achse
drehen. Und die Z-Achse ist bei einem Zylinder immer die Zylinderachse,
unabhängig davon, welche Stellung der Zylinder im Moment im Raum hat.
42

Dies bedeutet letztlich, dass die translatorischen Bewegungen im Raum
weiterhin normal durchgeführt werden, das Objekt wird sich um die X- und Y-
Achse einfach nicht mehr drehen, aber um seine eigene Achse wird das
Objekt sich weiterhin frei drehen können.

Räumlich fixierte Objekte

SyntaxSET PROPERTY (O1, SIM_MEMBER, bool)

o1: Objekt Referenz {o1, o2, o3, ...}
SIM:MEMBER: reserviertes Wort
bool: TRUE oder FALSE (für aktivieren oder deaktivieren)

BeschreibungDas verwendete Synonym für den Begriff, dass ein Objekt im Raum fixiert
bleibt und sich folglich überhaupt nicht mehr dreht und bewegt heisst
‘SIM_MEMBER’ (Simulations Teilnehmer). Ein Objekt welches an der
Simulation nicht mehr teilnimmt wird bei den Berechnungen sämtlicher
Bewegungen übergangen. Das Objekt ist aber weiterhin vorhanden, existent
und nimmt sogar an den Kollisionen weiterhin teil, so wie diese
Eigenschaften für das betreffende Objekt ggf. definiert sind. So gesehen ist
die Aussage, dass das Objekt an den Simulationen nicht mehr teilnimmt,
vielleicht etwas zu krass ausgedrückt, aber wir bleiben jetzt bei diesem
Ausdruck.

BeispielSET PROPERTY (O30, SIM_MEMBER, FALSE)

Das Objekt mit der Referenz-Nr. 30 ist im Raum fixiert.

Geschwindigkeit (velocity)

SyntaxSET PROPERTY (O1, VELOCITY, {X|Y|Z}, double)

o1: Objekt Referenz {o1, o2, o3, ...}
VELOCITY: reserviertes Wort
{X|Y|Z}: Es wird eine Koordinatenrichtung gesetzt (X oder Y oder Z)
double: Fliesskommawert

BeschreibungDie translatorische Geschwindigkeit des Schwerpunktes eines Objektes wird
mit dieser Anweisung für jede Raumkoordinate einzeln zugewiesen. Natürlich
bezieht sich diese Geschwindigkeit auf das globale Koordinatensystem. Diese
Funktion wird häufig dazu verwendet um einem Objekt eine Anfangs-
geschwindigkeit zu geben oder um die Geschwindigkeit eines Objektes in
einem ‘sonar script control system’ kontinuierlich zu steuern.

Zylinder-Facette (bevel)

SyntaxSET PROPERTY (O1, BEVEL, ROUND || FACET, double)

o1: Objekt Referenz {o1, o2, o3, ...}
BEVEL, ROUND, FACET: reservierte Worte
double: facet size

BeschreibungDiese Funktion ist zum Nachbearbeiten eines bereits bestehenden Zylinders
mit der Referenz ‘O1’. Der ursprünglich scharfkantige Zylinder bekommt an
seinen kreisförmigen Kanten entweder eine Facette von 45° oder eine
43

Rundung je nachdem wie der dritte Parameter gesetzt wird. Die Abmessung
der Facette bzw. Rundung wird mit dem letzten Parameter übergeben.

facet size

Die Facetten nehmen als geometrische Konturen an den Interaktions- und
Kollisionsberechnungen während den Simulationen teil.

Objekt Farbe

Syntax SET PROPERTY (O1, COLOR_STD, nr)
SET PROPERTY (O1, COLOR_RGB, red, green, blue)

o1: Objekt Referenz {o1, o2, o3, ...}
COLOR_STD, COLOR_RGB: reservierte Worte
nr: integer [0..25]
red, gree, blue: integer Werte [0..255]

Beschreibung Einem Objekt kann eine beliebige Farbe zugeordnet werden. Es gibt dazu
zwei Möglichkeiten. Die erste der beiden Varianten greift per Nummer auf
eine vordefinierte Standardfarbe zurück, die zweite Variante definiert die
Farbe explizit mit den drei Komponenten (rot, grün, blau). Jede Komponente
ist eine Zahl im Bereich [0..255] wie sie auch das Farb-Tool des
Systemprogramms ‘Paint’ benutzt (siehe: Paint / Palette bearbeiten).

Die Standardfarben, wie untenstehend abgebildet sind von links nach rechts
durchnummeriert. Beginnend mit ‘0’ für ‘no color’ besitzt die Farbe ‘Red’ die
Nummer ‘10’ und die letzte Farbe ‘Black’ schliesslich ‘25’.
Diese Standardfarben stehen auch im Dialog ‘Edit Objekt Property’ zur
Verfügung.


 0 5 10 15 20 25

Gruppenzugehörigkeit

Syntax SET PROPERTY (O1, GROUP_NR, LAST_GROUP_NR)
SET PROPERTY (O1, SUPERGROUP_NR, LAST_SUPERGROUP_NR)

o1: Objekt Referenz {o1, o2, o3, ...}
GROUP_NR, SUPERGROUP_NR: welcher Art von Gruppe soll das Objekt hinzugefügt werden
LAST_GROUP_NR, LAST_SUPERGROUP_NR: indirekte Referenzierung der Gruppennummer.
44

BeschreibungObjekte können zu Objektgruppen hinzugefügt werden. Es gibt vorerst zwei
Hierarchiestufen von Gruppen: (normale) Gruppen und Supergruppen.
Letztere sind Gruppen von Gruppen. Die Gruppen- bzw.
Supergruppennummer muss bereits bestehen. Mit diesen beiden
Anweisungen wird ein Objekt immer an die letzte Gruppe bzw. Supergruppe
angefügt. Es gibt dazu auch eine Funktion um jederzeit in einem script eine
neue Gruppennummer zu erzeugen. Sehen Sie dazu die Anweisungen

SET VALUE (NEW_GROUP_NR || NEW_SUPERGROUP_NR)

Man benutzt in diesem Zusammenhang also nicht eine absolute sondern eine
relative Referenzierung zur Gruppennummer, indem man ggf. im script
einfach eine neue Nummer erzeugt und alle relevanten Objekte an diese
anfügt. Die absolute Referenzierung ist wenig zuverlässig und kann sich
während der Bearbeitung ändern. Dies trifft z.B. zu, wenn mehrere
Modelldateien ‘ge-merged’ bzw. zusammengefügt werden, welche vorher
teilweise gleiche Gruppennummern verwendeten. Um solchen Konflikten aus
dem Weg zu gehen bekommen Gruppen beim ‘mergen’ oft automatisch neue
Gruppennummern.

Objektname

SyntaxSET PROPERTY (O1, NAME, “objectname”)

o1: Objekt Referenz {o1, o2, o3, ...}
NAME: reserviertes Wort [max. 32 Zeichen]
“objectname”: In Gänsefüsschen gesetzter Name des Objektes

BeschreibungEin beliebiger, vom Benutzer gesetzter, Name des Objektes mit maximal 32
Zeichen Länge. Ueberzählige Zeichen werden einfach abgeschnitten. Der
Name muss kein zusammenhängendes Wort sein. Diese Bezeichnung wird in
den sog. ‘Interaction Rules by Name’- Regeln zum Vergleich herangezogen.
Im ‘Object Tool’ werden die Objekte unter diesen Namen aufgeführt. Letztlich
wird dieser Name in vielen Funktionen und Dialogen zur schnelleren
Identifikation gezeigt. Die Namensgebung ist aber nicht obligatorisch. Wird
kein Name vergeben, dann wird oft die Bezeichnung ‘not specified’
verwendet bzw. angezeigt.

Sichtbarkeit

SyntaxSET PROPERTY (O1, VISIBILITY, bool)

o1: Objekt Referenz {o1, o2, o3, ...}
VISIBILITY: reserviertes Wort
bool: Aktivierung der Sichtbarkeit (TRUE, FALSE)

BeschreibungObjekte können in den Darstellungen am Bildschirm ausgeblendet werden.
Objekte welche die Eigenschaft (visibilty = FALSE) haben, werden beim
Zeichnen in den 2D- und 3D-Ansichten einfach übergangen. Darüber hinaus
bleiben diese ausgeblendeten Objekte aber weiterhin in jeder Hinsicht aktiv.
Insbesondere nehmen sie an den Simulationen ohne Einschränkungen teil.

Wireframe

SyntaxSET PROPERTY (O1, WIREFRAME, bool)

o1: Objekt Referenz {o1, o2, o3, ...}
WIREFRAME: reserviertes Wort
45

bool: Aktivierung der Wireframe Darstellung des Objektes (TRUE, FALSE)

Beschreibung Ein Objekt kann in der 3D-Darstellung statt als ‘solid’ auch als ‘wireframe’-
Objekt dargestellt werden (Drahtgitterdarstellung). Ein Objekt welches auf
diese Weise gezeichnet wird, ist durchsichtig. Dies ist mitunter ein Grund,
weshalb man einzelne Objekte manchmal als wireframe darstellt. Es werden
nur die Kanten gezeichnet, aber ohne Flächen. Schaltet man die Sichtbarkeit
(Visibility) eines Objektes aus, dann ist von ihm nichts mehr zu sehen. Als
Wireframe kann man das Objekt und seine Lage aber weiterhin erkennen.

46

Objekt-Interaktion

Interaktionsregel Erzeugen

Makro 1CREATE IACT_RULE (O1, O2, bool)

O1, O2: Objekt Referenz {o1, o2, o3, ...}
bool: bool’scher Wert {TRUE || FALSE}

Makro 2CREATE IACT_RULE (O1, O2, bool, mode1, mode2)
CREATE IACT_RULE (SELECTION, bool, mode1, mode2)

O1, O2: Objekt Referenz {o1, o2, o3, ...}
bool: bool’scher Wert {TRUE || FALSE}
mode1, mode2: {SINGLE || GROUP_NR || SUPERGROUP_NR}

BeschreibungDer bool’sche Wert setzt die eigentliche Interaktionsregel fest, welche
besagt: Ja, die beiden Objekte sollen interagieren oder Nein, sie sollen es
nicht. 
Die Parameter ‘mode1’ und ‘mode2’ machen eine Aussage über den
Anwendungsbereich dieser Regel: Bezieht sich die Regel bezüglich ‘O1’ resp.
‘O2’ jeweils über ein einzelnes Objekt, über die ganze Gruppe welcher ‘O1’
angehört oder sogar die ganze Supergruppe. Dementsprechend kann der
Benutzer mit diesen zusätzlichen Parametern für beide Referenz-Objekte
eine entsprechende Information einbringen. Wie diese Regel auch immer
gesetzt wird, es handelt sich in jedem Fall um eine bilaterale
Interaktionsregel. Wird die Anweisung auf eine ganze Gruppe angewendet,
dann werden entsprechend mehrere bilaterale Regeln aufgesetzt, für jede
Paarung eine.

Interaktionskonstante (interaction const.)

SyntaxSET PROPERTY (O1, C_INTERACT_LIN, double)
SET PROPERTY (O1, C_INTERACT_QUAD, double)

o1: Objekt Referenz {o1, o2, o3, ...}
C_INTERACT_LIN, C_INTERACT_QUAD: reserviertes Wort
double: Fliesskommawert

BeschreibungDie Interaktionskonstante bestimmt die Oberflächenhärte bei Kollisionen.
Man kann sich diese als Federkonstante vorstellen. Objekte können weich
wie Gummi oder hart wie Stahl kollidieren. Ein guter Mittelwert für
Problemstellungen im Labormassstab ist ‘0.01’. Kleinere Werte, z.B. ‘0.0001’,
charakterisieren weichere Materialien, grössere Werte z.B. ‘1.0’
entsprechend härtere. Die Interaktionsfunktion rechnet immer mit zwei
Konstanten, einer linearen und einer quadratischen. Wie bei einer Druckfeder
entstehen bei der Kollision von zwei Objekten abstossende Kräfte nach der
Formel

Fr = ±fH * (cLIN * dr + cQUAD * dr
2 + Dr)

Fr: abstossende Kraft
47

cLIN, cQUAD: Interaktionskonstanten
dr: Kollisionstiefe zwischen den Objekten
fH: Hysterese Faktor (berücksichtigt die Energie Absorption beim Stoss)
Dr: Dämpfungsterm (numerische Dämpfung)

Die berechnete Kraft wirkt immer und ausnahmslos auf beide Objekte mit
dem gleichen Betrag in entgegengesetzter Richtung (actio = reactio). Damit
wird letztlich die Impulserhaltung gewährleistet.

Die beiden Interaktionskonstanten (linear, quadratisch) können unabhängig
voneinander mit einer der beiden Anweisungen gesetzt werden. Der
Benutzer hat damit die Möglichkeit, eher ausgeglichene Wertpaarungen zu
setzen oder das Gewicht mehr auf eine der beiden Konstanten zu legen um
die Charakteristik der Stossberechnung entsprechend zu beeinflussen.

Interaktionspunkte

Syntax SET PROPERTY (O1, INTERACT_CONTROLPOINT, x1, y1, z1, bool)

o1: Objekt Referenz {o1, o2, o3, ...}
INTERACT_CONTROLPOINT: reserviertes Wort
{x1|y1|z1}: die kartesischen Koordinaten des Kontrollpunktes im lokalen, Objekt-eigenen
Koordinatensystem
bool: Aktivierung des Kontrollpunktes (TRUE, FALSE)

Beschreibung

Chladnische Klangfiguren
entstehen auf
schwingenden Blechen
mit aufgestreutem Sand

Grundsätzlich kümmert sich das sonar System selbständig um die
Berechnungen der Interaktionen zwischen den Objekten. Der Benutzer
spezifiziert welche Objekte wann und wie miteinander kollidieren sollen, aber
die Art und Weise wie die Interaktion eines gewissen Objektes mit einem
anderen Objekt im Einzelnen berechnet werden soll, das erledigt die
Software selbständig. Es gibt aber Fälle, wo der Benutzer dem System helfen
kann, diese Berechnung besser, gezielter oder schneller durchzuführen. Ein
solches Mittel in diese Berechnungen einzugreifen ist das Setzen von sog.
Kollisionspunkten, die letztlich nichts anderes bewirken, als dem System
mitzuteilen, wo genau die Interkation zwischen zwei Objekten am besten
berechnet werden soll. Diese Information einzubringen macht nur in
speziellen Begegnungsarten zwischen den Objekten einen Sinn bzw. ist nur
in speziellen gegenseitigen Anordnungen der Objekte zweckmässig.

Ein Beispiel für den Einsatz dieser Eigenschaft ist dann gegeben, wenn zwei
oder mehrere flache, scheibenartige oder blechartige Objekte mit ihrer
gesamten Oberfläche aufeinander liegen. Man kann leicht verstehen, dass
die Interaktionskontrolle in einer solchen Situation deshalb nicht trivial ist,
weil der Eindringvorgang einer Scheibe in die andere infinitesimal gesehen in
einem Moment die gesamte Fläche umfassen kann, wenige Rechenzyklen
später aber nur noch einen kleinen Eckbereich betrifft, weil der Rest sich für
einen kleinen Moment um ein paar Nanometer vom anderen Blech entfernt
hat. Solchermassen grossflächig interagierende Objekte tendieren dazu, ihre
Art der Interaktion dynamisch ständig zu ändern und neigen deshalb zu
Schwingungen. Sie bringen Unruhe in das System. Die Ursache für das Uebel
ist die ständig ändernde Interaktionsfläche welche stetig zwischen den
Objekten herumwandert wie chladnische Klangfiguren. Mit dem Setzen von
definierten Interaktionspunkten wirkt man genau dieser Ursache entgegen,
indem man festlegt, dass die Interaktion zwischen zwei Blechteilen immer an
gleichen Orten stattfinden soll. Dies führt letztlich zu wesentlich stabileren
Interaktionen. Das Festlegen der Positionen von Kontrollpunkten liegt in der
Verantwortung des Benutzers und muss wohl überlegt sein. Die Punkte
sollten unter Berücksichtigung der zu erwartenden Bewegungen der Objekte
im Laufe einer Simulation ihren Kontakt zum Zielobjekt mit Vorteil nicht
verlieren, d.h. nicht über die Kanten hinaus geraten.
48

BeispielEin Beispiel, wo der Einsatz dieser Funktion angebracht ist, finden wir bei
einem sog. Zahnkettentrieb, wo mehrere Kettenglieder nebeneinander
liegen und die Zwischenglieder sich zudem seitlich frei bewegen können und
nur von den Nachbargliedern in ihrer seitlichen Bewegungsfreiheit
eingeschränkt werden.

FIGURE 6. Zahnkettentrieb mit gestapelten Laschen

FIGURE 7. Die Interaktionspunkte über und unter den Bohrungen einzelner Laschen welche den
Ort der seitlichen Interaktion zu den Nachbarlaschen vorgeben.

Interaktionsrichtung einschränken

SyntaxSET PROPERTY (O1, INTERACT_DIRECTION, directionSpecifier)

o1: Objekt Referenz {o1, o2, o3, ...}
INTERACT_DIRECTION: reserviertes Wort
directionSpecifier: {ALL_DIRECTIONS, AXIAL_ONLY, RADIAL_ONLY}
default: ALL_DIRECTIONS

BeschreibungDie Interaktion einzelner Objekte kann bezüglich der Raumrichtung, in der
sie berechnet werden soll, eingeschränkt werden. Es geht dabei um eine
Leistungssteigerung. Der Begriff ‘Raumrichtung’ bezieht sich dabei auf die
Begriffe ‘axial’ und ‘radial’, welche in Bezug zur Nullstellung der Objekte zu
interpretieren sind. Wenn wir davon ausgehen, dass die beiden Laschen in
der letzten Abbildung in ihrer Nullstellung dargestellt sind, dann liegen diese
in der X-Y-Ebene und die Achse senkrecht zur Bildschirmebene ist die Z-
Achse. Eine Bewegung einer Lasche in Z-Richtung heisst in dieser
Terminologie immer ‘axial’ und eine Bewegung in der X-Y-Ebene ‘radial’.
Wenn es um diese Begriffe geht, können wir uns folglich immer eine Achse in
Z-Richtung vorstellen auf der z.B. ein Rad aufgeschoben wurde, welches
‘axial’ verschoben oder ‘radial’ belastet werden kann. 
In Zusammenhang mit diesen Begriffen ist auch ersichtlich, dass diese
Funktion nur für Objekte einen Sinn macht, welche ihre räumliche
Ausrichtung in Bezug zu diesen Raumrichtungen nicht wesentlich ändern. Die
Begriffe achsial und radial wechseln z.B. für eine Lasche eines Kettentriebs
während dem Betrieb nie ihre Bedeutung, weil der ganze Mechanismus und
alle Kettenelemente sich mehr oder weniger planar bewegen.
49

Vergleich zu ‘Interaction
Rule by Name’

Die hier beschriebene Funktion schliesst ein Objekt ggf. völlig und allgemein
aus von entsprechenden Interaktionsberechnungen in bestimmte
Raumrichtungen. Dies im Gegensatz zur Funktion ‘Interaction Rule by Name’
welche die Begriffe ‘axial’ und radial’ auch verwendet, aber nur in
Zusammenhang mit einer bestimmten Gruppe von Objektpaarungen welche
durch die Objektnamen festgelegt wird. Um auf den Zahnkettentrieb im
letzten Abschnitt zurückzukommen, würde sich die hier beschriebene
Funktion deshalb für eine Zahnlasche nicht eignen, weil diese axial mit den
Nachbarlaschen und radial mit dem Kettenrad interagieren muss. Deshalb
würde man in diesem Fall die Begriffe axial und radial besser mit den
‘Interaction Rule by Name’-Regeln verwenden.

Interaktionsmethode (interaction method)

Syntax SET PROPERTY (O1, INTERACT_METHOD, ELASTIC, double)

o1: Objekt Referenz {o1, o2, o3, ...}
INTERACT_METHOD, ELASTIC: reservierte Worte
double: Fliesskommawert [0..1]

Beschreibung Bei der Interaktionsmethode geht es um das elastisch-plastische Verhalten
der Oberfläche von Objekten beim Stoss. Auf die Stossenergie bezogen kann
bei einem Stoss ein beliebiger Anteil der Energie absorbiert und der Rest
wieder reflektiert werden. Mit dieser Funktion setzen wir diese Eigenschaft
für ein einzelnes Objekt, d.h. wir setzen hier den Energieanteil des Stosses
welcher reflektiert wird. Der Anteil wird als Wert im Bereich [0.0 ... 1.0]
angegeben. 
0: Nichts wird reflektiert -> rein plastischer Stoss. 
1: Alles wird reflektiert -> rein elastischer Stoss
Standardwert = 0.1 -> Elastisch / Plastisch = 10% / 90%

Bei Kollisionen zwischen Objekten mit unterschiedlichen Einstellungen der
Interaktionsmethode wird automatisch ein Zwischenwert berechnet.

Interaktionsart (interaction mode)

Syntax SET PROPERTY (O1, INTERACT_MODE, {ACTIVE,PASSIVE,NO_INTERACTION})

o1: Objekt Referenz {o1, o2, o3, ...}
INTERACT_MODE, ACTIVE, PASSIVE, NO_INTERACTION: reservierte Worte

Beschreibung Um die Leistung der Software zu steigern wird in sonar eine Klassifizierung
der Objekte bezüglich ihrem allgemeinen Interaktionsverhalten verwendet.
Sehen Sie dazu das entsprechende Kapitel im Tutorial, User Manual oder
Anleitungsblatt. Default-mässig ist ein Objekt ‘ACTIVE’ und kümmert sich
damit aktiv um Kollisionen mit anderen Objekten. In diesem Sinne müssen in
Makros nur diejenigen Objekte mit dieser Funktion spezifiziert werden,
welche einer anderen Regel gehorchen sollen.
50

Variablen (Primitives)

Viele Variablen der ‘Primitives’ können abgefragt und in Ausdrücken von
‘sonar script’ Kontrollsystemen verwendet werden. Deshalb finden die in
diesem Kapitel beschriebenen Variablen hauptsächlich in ‘sonar-SIM’ ihre
Anwendung, während die im letzten Kapitel beschriebenen Eigenschaften der
‘Primitives’ zur Hauptsache in sonar-LAB-Makros benutzt werden.
Die folgenden Variablen sind folglich sowohl zum Setzen als auch zum
Abfragen von Werten gedacht. Diese Variablen können Bestandteil einer
Formel sein, welche ein Resultatwert liefert. Andererseits kann dieser
Resultatwert auch wieder einer Variablen zugewiesen werden. Allerdings sind
nicht alle Variablen für beide Aufgaben geeignet. So macht es z.B. keinen
Sinn einem Objekt eine Beschleunigung zu geben. Wenn schon, dann würde
man auf das betreffende Objekt eine angemessene Kraft ausüben, welche
diese Beschleunigung bewirkt. Auch das Setzen der Distanz oder der Kraft
eines Links ist unsinnig. Ursache und Wirkung sollten nicht verwechselt
werden. Wir unterscheiden zwischen verschiedenen Klassen von Variablen
wie Geometrie, Physik, und allg. Variablen.

Ueberblick

VoraussetzungenDie Komponenten in den folgenden Variablen beziehen sich immer auf das
globale (|| lokale??) Koordinatensystem.

Geometrie

TABLE 4.

Variable sonar script Bezeichnung Kurzbezeichnung Beispiel

Position POSITION POS POS.X(O1), POS.Y(O12), POS.Z(O32)

Schwerpunkt CENTER_MASS CM CM.X(O1), CM.Y(O12), CM.Z(O32)

Distanz, Abstand DISTANCE D D.X(K1), D.Y(K12), D.Z(K32)

Physik

TABLE 5.

Variable Variablen Bezeichnung Kurzbezeichnung Beispiel

Beschleunigung ACCELERATION A A.X(O1), A.Y(O12), A.Z(O32)

Kraft FORCE F F.X(O1), F.Y(O12), F.Z(O32)

Drehmoment MOMENT_FORCE M M(O1)

externes Drehmoment MOMENT_FORCE_EXT M_EXT M(O1)

Winkelbeschleunigung ANGULAR_ACCELERATION BETA BETA(O1)

Winkelgeschwindigkeit ANGULAR_VELOCITY OMG OMG(O1)

Impuls MOMENTUM P P.X(O1), P.Y(O12), P.Z(O32)

Kin. Energie E_KIN E_KIN E_KIN(O1)

Rotationsenergie E_ROT E_ROT E_ROT(O1)

Kollisionskraft FORCE_INTERACTION F_IACT F_IACT(O1)

Geschwindigkeit VELOCITY V V.X(O1), V.Y(O12), V.Z(O32)
51

Allgemein

TABLE 6.

Variable Variablen Bezeichnung Kurzbezeichnung Beispiel

Zyklus CYCLE C C


Position

Syntax POSITION.component(O1)
POS.component(O1)

POSITION, POS: reservierte Worte
component: {X|Y|Z} einen Koordinatenbezeichner des 3D-Positions-Vektors
o1: Objekt Referenz {o1, o2, o3, ...}

Beschreibung Der Ausdruck ist eine Komponente {X|Y|Z} der globalen Position des
Bezugspunktes, eines Objektes relativ zum Koordinatenursprung. Das
folgende Beispiel berechnet den räumlichen Abstand zwischen den
Bezugspunkten von zwei Objekten (O6, O4) und führt eine Reihe von
Anweisungen durch, falls oder solange die beiden Objekte einen räumlichen
Abstand von weniger als 12.5 cm voneinander haben.

Beispiel DO IF (SQRT(SQR(POS.X(O6)-POS.X(O4))
 +SQR(POS.Y(O6)-POS.Y(O4))
 +SQR(POS.Z(O6)-POS.Z(O4))) < 12.5)
 statementList
END IF

Beachten Sie, dass die Linie mit dem Test ‘DO IF (...) auf einer einzigen Linie
geschrieben werden muss. Sie ist hier nur zum besseren Verständnis
umgebrochen worde.

Schwerpunkt

Syntax CENTER_MASS.component(O1)
CM.component(O1)

CENTER_MASS, CM: reservierte Worte
component: {X|Y|Z} einen Koordinatenbezeichner des 3D-Positions-Vektors
o1: Objekt Referenz {o1, o2, o3, ...}

externe Kraft FORCE_EXT F_EXT F_EXT.X(O1), F_EXT.Y(O12), F_EXT.Z(O32)

Drehimpuls ANGULAR_MOMENTUM AM AM(O1)

Widerstandsmoment MOMENT_FRICTION M_FRICTION M_FRICTION(K1)

Zeit TIME T T

Kin. Energie Total E_KIN_TOT E_KIN_TOT E_KIN_TOT

Rot. Energie Total E_ROT_TOT E_ROT_TOT E_ROT_TOT

Energie Total E_TOT E_TOT E_TOT

Impuls Total MOMENTUM_TOT P_TOT P_TOT

TABLE 5.

Variable Variablen Bezeichnung Kurzbezeichnung Beispiel
52

Beschreibung

 Schwerpunkt

 Bezugspunkt


Der Schwerpunkt ist die relative Position desselben zum Bezugspunkt des
Objektes, ausgedrückt im lokalen Koordinatensystem des Objektes.
Abgesehen von ein paar Ausnahmen, auf die an dieser Stelle nicht
eingegangen werden soll, ist der Schwerpunkt allerdings mit dem
Bezugspunkt identisch. Anders ausgedrückt, der Bezugspunkt fällt in den
meisten Fällen mit dem Schwerpunkt zusammen. Folglich sind die
Koordinaten des Schwerpunktes meistens Null.

Distanz, Abstand

SyntaxDISTANCE.component(K1)
D.component(K1)

DISTANCE, D: reservierte Worte
component: {X|Y|Z} einen Koordinatenbezeichner des 3D-Distanz-Vektors
K1: Link Referenz {k1, k2, k3, ...}

BeschreibungDie absolute Auslenkung eines Links zwischen zwei Objekten. Dies ist die
lokale Dehnung an der Verbindungsstelle. Betrachtet man den Link als Feder,
dann entspricht dieser Abstand der Verlängerung der Feder unter Last. Ohne
Last beträgt diese Distanz gleich Null. Je nachdem ob man für die Link-
Konstante nur die lineare oder auch die quadratische Linkkonstante benutzt
ist die Distanz eines Links eine homogene lineare Funktion der Last oder
eben eine quadratische.

Beschleunigung

SyntaxACCELERATION.component(O1)
A.component(O1)

ACCELERATION, A: reservierte Worte
component: {X|Y|Z} einen Koordinatenbezeichner des 3D-Beschleunigungs-Vektors
o1: Objekt Referenz {o1, o2, o3, ...}

BeschreibungDie Funktion liefert die aktuelle Beschleunigung eines Objektes. Die
Beschleunigungswerte können je nach Problemstellung mitunter stark
verrauscht sein. Oft müssen die aufgezeichneten Beschleunigungswerte
deshalb vor einer Verwendung in einer grafischen Darstellung geglättet
werden. Im Prinzip wären entsprechende Messwerte auch in experimentellen
Datenaufzeichnungen verrauscht, zumindest theoretisch. Allerdings sind der
Aufzeichnungssensor selbst und die Aufzeichnungsapparatur durch ihre
inneren Trägheiten bereits die ersten Filter welche diese Daten etwas
dämpfen. Ein anderer Weg in den Besitz von Beschleunigungswerten zu
gelangen, ist die Aufzeichnung von Geschwindigkeitswerten. Von diesen
Daten wird später, zum Beispiel in EXCEL, die erste Ableitung gebildet was
die Beschleunigungen ergibt.

Winkelbeschleunigung

SyntaxANGULAR_ACCELERATION.component(O1)
BETA.component(O1)

ANGULAR_ACCELERATION, BETA: reservierte Worte
component: {X|Y|Z} einen Koordinatenbezeichner des 3D-Beschleunigungs-Vektors
o1: Objekt Referenz {o1, o2, o3, ...}
53

Beschreibung Der Winkelbeschleunigungsvektor steht senkrecht auf der aktuellen
Drehebene des Objektes. Die Anweisung liefert den vektoriellen Wert der im
Moment wirkenden Winkelbeschleunigung am referenzierten Objekt.

Kraft

Syntax FORCE.component(O1)
F.component(O1)

FORCE, F: reservierte Worte
component: {X|Y|Z} einen Koordinatenbezeichner des 3D-Kraft-Vektors
o1: Objekt Referenz {o1, o2, o3, ...}

Beschreibung Wird mit dieser Anweisung eine Kraft auf ein Objekt berechnet und dem
Objekt zugewiesen, dann wird diese Kraft zu den anderen wirkenden Kräften
auf das Objekt, die allenfalls noch wirken, hinzuaddiert. Die Zuweisung ist
nur komponentenweise möglich. Folglich können auf diese Weise einem
Objekt mehrmals in Folge unterschiedlich berechnete Kräfte zugewiesen
werden. Zugewiesene Kräfte mit dieser Variablen gelten in jedem Fall nur für
den laufenden Berechnungszyklus. Nachdem die Summe aller Kräfte auf ein
Objekt ausgewertet wurde, werden sie für den nächsten Rechenzyklus auf
Null zurückgesetzt. Die Variable ‘FORCE’ funktioniert in diesem Sinne anders
als die Variable ‘FORCE_EXT’, welche zwar auch immer additiv
weiterverwendet wird, aber als Zahlenwert permanent stehen bleibt bis der
Benutzer den Wert ändert oder ausschaltet.

Liefert die Anweisung ein Resultat dessen Wert in einem Term oder in einer
Formel verwendet wird, dann berechnet die Anweisung ‘FORCE’ die
vektorielle Summe aller Kräfte auf ein Objekt und setzt diesen Wert in der
betreffenden Formel ein.

Kollisionskraft

Syntax FORCE_INTERACTION.component(O1)
F_IACT.component(O1)

FORCE_INTERACTION, F_IACT: reservierte Worte
component: {X|Y|Z} einen Koordinatenbezeichner des 3D-Kraft-Vektors
o1: Objekt Referenz {o1, o2, o3, ...}

Beschreibung Da in der sonar Software alle Stösse zwischen Objekten explizit nachgebildet
werden, kann während einem Stoss auch der zeitliche Kraftverlauf an der
Kontaktstelle der Objekte rechnerisch weiterverwendet werden. Es ist die
wechselnde wirkende Kraft welche zeitlich über den gesamten Stoss
integriert schliesslich den sog. Kraftstoss ergibt.

Drehmoment

Syntax MOMENT_FORCE.component(O1)
M.component(O1)

MOMENT_FORCE, M: reservierte Worte
component: {X|Y|Z} einen Koordinatenbezeichner des 3D-Momenten-Vektors
o1: Objekt Referenz {o1, o2, o3, ...}

Das Drehmoment ist ein Vektor welcher mit seinem Fusspunkt senkrecht auf
der Drehebene steht. Wie der Kraftvektor ‘FORCE’ kann das Drehmoment
54

gesetzt oder abgefragt und weiterverwendet werden. Die Zuweisung
geschieht komponentenweise.

Externes Drehmoment

SyntaxMOMENT_FORCE_EXT.component(O1)
M_EXT.component(O1)

MOMENT_FORCE_EXT, M_EXT: reservierte Worte
component: {X|Y|Z} einen Koordinatenbezeichner des 3D-Momenten-Vektors
o1: Objekt Referenz {o1, o2, o3, ...}

BeschreibungDas externe Drehmoment funktioniert wie das normale Drehmoment
‘MOMENT_FORCE’, mit dem Unterschied, dass das externe Drehmoment
nach dem Setzen bis auf Weiteres stehen bleibt, während das normale
Drehmoment nur für den laufenden Zyklus gilt.

Widerstandsmoment

SyntaxMOMENT_FRICTION(K1)
M_FRICTION(K1)

MOMENT_FRICTION, M_FRICTION: reservierte Worte
k1: Link Referenz {k1, k2, k3, ...}

BeschreibungWerden Links als Lagerpunkte von Achsen verwendet, dann haben diese
vorerst keine Lagerreibung. Mit dieser Anweisung wird das
Widerstandsmoment eines einzelnen referenzierten Links gesetzt oder
abgefragt. Damit lässt sich während einer Simulation eine Lagerreibung auch
dynamisch verändern.

Geschwindigkeit

SyntaxVELOCITY.component(O1)
V.component(O1)

VELOCITY, V: reservierte Worte
component: {X|Y|Z} einen Koordinatenbezeichner des 3D-Geschwindigkeits-Vektors
o1: Objekt Referenz {o1, o2, o3, ...}

BeschreibungDie Schwerpunktgeschwindigkeit des Objektes mit der Referenz ‘O1’ in
globalen Koordinaten. Die Geschwindigkeit kann sowohl abgefragt und
weiterverwendet als auch mit einer Zuweisung gesetzt werden.

Winkelgeschwindigkeit

SyntaxANGULAR_VELOCITY.component(O1)
OMG.component(O1)

ANGULAR_VELOCITY, OMG: reservierte Worte
component: {X|Y|Z} einen Koordinatenbezeichner des 3D-Vektors
o1: Objekt Referenz {o1, o2, o3, ...}

BeschreibungDie Komponenten des aktuellen Winkelgeschwindigkeitsvektors des Objektes
mit der Referenz ‘O1’ in globalen(??) Koordinaten. Die Winkelgeschwindigkeit
55

kann sowohl abgefragt und weiterverwendet als auch mit einer Zuweisung
gesetzt werden.

Impuls

Syntax MOMENTUM.component(O1)
P.component(O1)

MOMENTUM, P: reservierte Worte
component: {X|Y|Z} einen Koordinatenbezeichner des 3D-Impuls-Vektors
o1: Objekt Referenz {o1, o2, o3, ...}

Beschreibung Diese Anweisung liefert den translatorischen Impuls des referenzierten
Objektes. Der Impuls wird dabei als (p = m * |v|) berechnet und ggf.
weiterverwendet.

Gesamtimpuls

MOMENTUM_TOT
P_TOT

MOMENTUM_TOT, P_TOT: reservierte Worte

Beschreibung Der Gesamtimpuls des gesamten Systems bzw. die Summe aller
Einzelimpulse der Objekte.

Drehimpuls

Syntax ANGULAR_MOMENTUM.component(O1)
AM.component(O1)

ANGULAR_MOMENTUM, AM: reservierte Worte
component: {X|Y|Z} einen Koordinatenbezeichner des 3D-Impuls-Vektors
o1: Objekt Referenz {o1, o2, o3, ...}

Beschreibung Der Betrag des Eigendrehimpulses wird vom System als (L = )
berechnet (??) und als skalare Grösse weiterverwendet.
: Trägheitstensor des Objektes
Winkelgeschwindigkeit


Energie

Syntax E_KIN.component(O1)
E_ROT.component(O1)
E_KIN_TOT
E_ROT_TOT
E_TOT

E_KIN, E_ROT, E_KIN_TOT, E_ROT_TOT, E_TOT: reservierte Worte
o1: Objekt Referenz {o1, o2, o3, ...}

Beschreibung Die Energie Anweisungen liefern die Energiewerte der Reihe nach wie folgt:

• die kinetische Energie des referenzierten Objektes
56

• die Rotationsenergie des referenzierten Objektes
• Die totale kinetische Energie sämtlicher Objekte im Modell
• die totale Rotationsenergie sämtlicher Objekte im Modell
• Die Gesamtenergie im Modell (E_KIN_TOT + E_ROT_TOT)

Man könnte diese Werte z.B. als Abbruchkriterium in einem Kontrollsystem
benutzen, in welchem sich der Energiewert eines einzelnen Objektes ändert
oder wo sich das Verhältnis der gesamten kinetischen zur gesamten
Rotationsenergie verschiebt.

Zeit

SyntaxTIME
T

TIME, T: reservierte Worte

BeschreibungDie Simulationszeit einer laufenden Simulation. Diese Zeit hat nichts zu tun
mit der Weltzeit, wie sie ev. auf der Uhr am Handgelenk (oder dem
Mobiltelefon) angezeigt wird. ’TIME’ ist die Zeit in der Modellwelt Ihrer
Simulation. Die Simulationszeit kann ggf. mit einem Menu-Befehl jederzeit
auf Null zurückgesetzt werden, sogar während einer laufenden Simulation.
Alle zeitabhängigen Variablen, Kontrollsysteme, grafischen Darstellungen
und Einstellungen beziehen sich auf diese Zeit.

Zyklus

SyntaxCYCLE
C

CYCLE, C: reservierte Worte

BeschreibungDie Anzahl durchgeführter Rechenzyklen. Die Zykluszahl wird jedesmal wenn
die gesamte Physik des Modells einmal vollständig durchgerechnet wurde um
Eins erhöht. Dieser Vorgang geschieht zusammen mit der Erhöhung der
Simulationszeit um ein Zeitinkrement ‘dt’. Die Anzahl Rechenzyklen pro
Simulation liegt in der Regel im Bereich von 1 Million und 1 Milliarde. Auch
die Zykluszahl kann wie die Simulationszeit ‘TIME’ jederzeit auf Null
zurückgesetzt werden.

Trigger

(reserved parameter name for future use)
57

Operationen an Primitives

Dieses Kapitel behandelt die folgenden Operationen

• Primitives Selektieren
• Primitives Bewegen

Selektieren / Überblick

Der folgende Ueberblick zeigt die Möglichkeiten ein oder mehrere Objekte zu
selektieren sowie die Selektion anderer Teile eines Modells.

Syntax (Objekte) SELECT OBJECT (O1)
SELECT OBJECT (LAST_OBJECT)
SELECT OBJECT (LAST_OBJECT - n)
SELECT OBJECT (POINT, x1, y1, z1)
SELECT OBJECT (POINT, ALL, x1, y1, z1)
SELECT OBJECT (RECT, XY, x1, y1, x2, y2)
SELECT OBJECT (SPACE, x1, y1, z1, x2, y2, z2)
SELECT OBJECT (ALL)
SELECT OBJECT (COLOR_STD, index)
SELECT OBJECT (COLOR_RGB, red, green, blue)

Syntax (Rohdaten) SELECT ELEMENT (E1)
SELECT CONTOUR (C1)

Syntax (Fixpunkte) SELECT FIXPOINT (F1)

Syntax (Links) SELECT LINK (K1)
SELECT LINK (x0, y0, z0)

o1, e1, c1, f1, k1: Referenzen auf entsprechende Objekt-Arten
LAST_OBJECT: das letzte Objekt in der Objektliste (Objekt Tool)
POINT: die nachfolgenden Variablen sind als Punkt zu interpretieren
ALL: die Operation bezieht sich auf alle Objekte, es werden alle Objekte selektiert.
XY: nimmt Bezug auf die X-Y-Hauptebene
RECT: ein Rechteck mit Blick auf eine Hauptebene
SPACE: ein Raumkörper (Quader)
n: ganze Zahl
x0, y0, z0; x1, y1, z1; x2, y2, z2: 3-dimensionale Punkte im kartesischen Koordinatensystem

Beschreibung Die Anweisung ‘SELECT OBJECT (POINT,x1,y1,z1)’ selektiert das erste
Objekt in der Objekt-Liste welches den Punkt (x1,y1,z1) in seinem Volumen
enthält. Wird als zweiter Parameter zusätzlich noch ‘ALL’ angegeben, dann
werden alle Objekte selektiert, welche diesen Punkt enthalten.

Der Parameter ‘RECT’ in der Hauptebene ‘XY’ bezieht sich auf die Front-
Ansicht bzw. die X-Y-Ansicht. Alle Objekte welche in dieser Projektion liegen
werden selektiert.
58

Der Parameter ‘SPACE’ schliesslich spannt einen Quader im 3-dimensionalen
Raum auf und selektiert alle Objekte welche mit ihrem Schwerpunkt
innerhalb dieses Quaders liegen.

Der Parameter ‘index’ muss sich im Bereich [0..25] befinden. Die drei
Farbwerte (red, green, blue) sind ebenfalls ganzzahlige Werte im Bereich
[0..255].

Die Anweisung ‘SELECT LINK (x0,y0,z0)’ selektiert den (punktförmigen)
Link am angegebenen Ort im Modell.

eine weitere Referenzierungsart

Eine weitere Art bestimmte Objekte zu referenzieren, welche nicht im
gleichen script erzeugt wurden, ist die folgende Methode.

BeispielSELECT OBJECT (POINT, x1, y1, z1) -- globale Koordinaten
SET VALUE (O1 = SELECTION)
SET PROPERTY (O1, DENSITY, 7.8)

BeschreibungDieses Beispiel erzeugt auf künstlichem Weg eine Referenz für ein
bestimmtes, vorher selektiertes Objekt, indem man zuerst das Objekt an der
globalen Position (x1, y1, z1) selektiert und anschliessend festlegt, diese
Selektion habe nun den Namen bzw. die Referenzbezeichnung ‘O1’. Im
weiteren Verlauf kann dieses referenzierte Objekt ‘O1’ auf dem gleichen Weg
weiter verwendet werden wie eine normal erzeugte Referenz.

SyntaxFIND OBJECT (O1, x1, y1, z1)
o1: Es wird eine Referenzierung auf ‘O1’ gesetzt
x1, y1, z1: kartesische Koordinaten eines globalen Raumpunktes.

BeschreibungEine ähnliche Funktion wie die letzte weiter oben weist das Objekt welches
den angegebenen globalen Punkt (x1, y1, z1) enthält direkt der Objekt-
Referenzierung ‘O1’ zu. Auch diese Objektreferenzierung kann anschliessend
wie eine normale automatisch erzeugte Referenz weiterverwendet werden.

Bewegen (Translation) / Überblick

Syntax (Objekte)TRANSLATE OBJECT(O1, ABSOLUTE, dx,dy,dz)
TRANSLATE OBJECT(O1, RELATIVE, dx,dy,dz)
TRANSLATE OBJECT(SELECTION, ABSOLUTE, dx,dy,dz)
TRANSLATE OBJECT(SELECTION, RELATIVE, dx,dy,dz)

Syntax (Objectgroup)TRANSLATE OBJECTGROUP(O1, ABSOLUTE ,dx,dy,dz)
TRANSLATE OBJECTGROUP(O1, RELATIVE, dx,dy,dz)
TRANSLATE OBJECTGROUP(LAST_GROUP_NR,ABSOLUTE, dx,dy,dz)
TRANSLATE OBJECTGROUP(LAST_GROUP_NR,RELATIVE, dx,dy,dz)

Syntax
(Objectsupergroup)

TRANSLATE OBJECTSUPERGROUP(O1, ABSOLUTE, dx,dy,dz)
TRANSLATE OBJECTSUPERGROUP(O1, RELATIVE, dx,dy,dz)
TRANSLATE OBJECTSUPERGROUP(LAST_SUPERGROUP_NR, ABS.., dx,dy,dz)
TRANSLATE OBJECTSUPERGROUP(LAST_SUPERGROUP_NR, REL.., dx,dy,dz)

Syntax (Grid)TRANSLATE GRID (G1, ABSOLUTE, dx,dy,dz)
TRANSLATE GRID (G1, RELATIVE, dx,dy,dz)
59

TRANSLATE GRID (SELECTION, ABSOLUTE, dx,dy,dz)
TRANSLATE GRID (SELECTION, RELATIVE, dx,dy,dz)

o1: Objekt Referenz {o1, o2, o3, ...}
ABSOLUTE: die Koordinaten sollen als absolute globale Koordinaten interpretiert werden
RELATIVE: die Koordinaten sollen relativ zur aktuellen Position der Objekte interpretiert werden
SELECTION, LAST_GROUP_NR, LAST_SUPERGROUP_NR: reservierte Worte
dx, dy, dz: 3-dimensionale kartesische Koordinatenwerte des Verschiebungsvektors

Beschreibung Die betreffenden Objekte werden dreidimensional und translatorisch, d.h.
ohne Drehungen, im Raum verschoben. Die Verschiebungen können immer
absolut zum Ursprung oder relativ zur aktuellen Position erfolgen. Diese
Operationen imitieren im Prinzip das Verschieben von Objekten in den
Ansichten mit der Maus

Bewegen (Rotation)

Syntax (Objects) ROTATE OBJECT (O1, cx,cy,cz, wx,wy,wz)
ROTATE OBJECT (SELECTION, cx,cy,cz, wx,wy,wz)

Syntax (Objectgroup) ROTATE OBJECTGROUP(O1, cx,cy,cz, wx,wy,wz)
ROTATE OBJECTGROUP(LAST_GROUP_NR, cx,cy,cz, wx,wy,wz)

Syntax
(Objectsupergroup)

ROTATE OBJECTSUPERGROUP(O1, cx,cy,cz, wx,wy,wz)
ROTATE OBJECTSUPERGROUP(LAST_SUPERGROUP_NR, cx,cy,cz, wx,wy,wz)

Syntax (Grid) ROTATE GRID (G1, cx, cy, cz, wx, wy, wz)

o1, g1: : Referenzen auf entsprechende Objekt-Arten
SELECTION, LAST_GROUP_NR, LAST_SUPERGROUP_NR: reservierte Worte
cx, cy, cz: 3-dimensionale kartesische Koordinatenwerte des Drehzentrums
wx, wy, wz: Drehwinkel für die drei Drehachsen in [rad].

Beschreibung Die betroffenen Objekte werden mit den angegebenen Winkeln (wx, wy, wz)
in [rad] um den Punkt (cx, cy, cz) als Drehzentrum gedreht. Es empfiehlt sich
immer nur einen der drei Winkel (wx, wy, wz) zu verwenden und die beiden
anderen auf Null zu setzen. Durch mehrmalige Anwendung dieser Anweisung
können die Objekte auf diesem Weg genau in der gewünschten Reihenfolge
um das Zentrum gedreht werden. Sind zwei oder drei Werte für (wx, wy, wz)
von Null verschieden, dann führt das System diese Drehungen in einer
vorgegebenen Reihenfolge durch. Und zwar der Reihe nach: wz -> wx -> wy.
Da Drehungen nicht kommutativ sind ergibt im Allgemeinen jede Reihenfolge
ein anderes Ergebnis.

Bewegen (mit Objektmatrix)

Syntax (Rohdaten) MOVE ELEMENT (E1, MOVE_MATRIX, O1)
MOVE ELEMENT (E1, MOVE_MATRIX, SELECTION)
MOVE ELEMENT (SELECTION, MOVE_MATRIX, O1)
MOVE ELEMENT (SELECTION, MOVE_MATRIX, SELECTION)

e1, o1: : Referenzen auf entsprechende Objekt-Arten
MOVE_MATRIX, SELECTION, : reservierte Worte

Beschreibung Statt eine Drehung direkt durch die Angabe eines Winkels und einer Achse zu
definieren, so wie im letzten Abschnitt, kann ein Rohdaten-Element in einer
Anweisung mit der Drehmatrix eines bereits bekannten Objektes gedreht
60

und translatorisch verschoben werden, welches entweder referenziert oder
selektiert wird. In der letzten der vier Anweisungen (oben) müssen also
vorab zwei Selektionen gesetzt werden, die Selektion eines Elementes und
eines Objektes. Der erste Parameter bezieht sich immer auf ein Element, der
letzte Parameter immer auf ein Objekt. 
Die Elemente werden mit dieser Anweisung simultan mit einem Objekt
bewegt. Und zwar rotativ als auch translatorisch. Die Elemente machen im
dreidimensionalen Raum dieselbe Bewegung wie das betreffende Objekt
ausgehend von seiner Nullposition bis zur aktuellen Position und Drehung im
Raum. Das System benutzt dazu die gespeicherte Rotationsmatrix und die
Koordinaten des Bezugspunktes des betreffenden Objektes.

Kombinierte Bewegung

SyntaxMOVE OBJECT (O1, ABSOLUTE, x0, y0, z0, wx, wy, wz)
MOVE OBJECT (O1, RELATIVE, x0, y0, z0, wx, wy, wz)
MOVE OBJECT (SELECTION, ABSOLUTE, x0, y0, z0, wx, wy, wz)
MOVE OBJECT (SELECTION, RELATIVE, x0, y0, z0, wx, wy, wz)

o1: : Referenz auf Objekt
ABSOLUTE, RELATIVE, SELECTION: reservierte Worte
x0, y0, z0: absolute kartesische Koordinaten oder Verschiebungsvektor (je nach Param.2)
wx, wy, wz: Drehungswinkel in [rad] um die einzelnen Koordinatenachsen

BeschreibungDie Befehle kombinieren alle Rotationen und die Translation in eine einzige
Anweisung. Als Erstes werden die Rotationen durchgeführt und in einem
zweiten Schritt die Translation. Die Rotationen werden in einer festen
Reihenfolge abgearbeitet: Rot(Z) -> Rot(X) -> Rot(Y). Deshalb sind die
Funktionen etwas unübersichtlich und auch nur eingeschränkt anwendbar.
Wir empfehlen aus diesem Grund besser die elementaren Funktionen
‘ROTATE OBJECT’ und ‘TRANSLATE OBJECT’ mehrmals in der gewünschten
Reihenfolge anzuwenden.

Löschen

MakroCLEAR OBJECT (O1 || SELECTION)

O1: Element Referenz {o1, o2, o3, ...}
SELECTION: (reserviertes Wort) -> es müssen Objekte selektiert sein.

BeschreibungWir verwenden hier in ‘sonar script’ ausdrücklich das Kommando ‘CLEAR’ und
nicht ‘DELETE’ um Objekte zu Löschen. Das bedeutet, dass die gelöschten
Objekte nicht in die Zwischenablage übertragen und folglich auch nicht mit
‘PASTE’ wieder eingesetzt werden können. Das Löschen und wieder Einsetzen
von Objekten innerhalb eines scripts macht letztlich keinen Sinn und ist nicht
notwendig bzw. kann ggf. besser anders gelöst werden (sehen Sie dazu
‘DUPLICATE’)

MakroCLEAR ALL

BeschreibungDiese Anweisung löscht alle was selektiert ist, wie auch immer sich die
Selektion zusammensetzt. Das können nur Objekte oder eine Kombination
aus Elementen und Objekten sein.
61

Duplizieren

Syntax (in place) DUPLICATE OBJECT (O1, INPLACE || TRUE)
DUPLICATE OBJECT (SELECTION, INPLACE || TRUE)
DUPLICATE OBJECT (ALL, INPLACE || TRUE)

Syntax (displaced) DUPLICATE OBJECT (O1, FALSE)
DUPLICATE OBJECT (SELECTION, FALSE)
DUPLICATE OBJECT (ALL, FALSE)

O1: Element Referenz {o1, o2, o3, ...}
SELECTION: (reserviertes Wort) -> es müssen Objekte selektiert sein
ALL: (reserviertes Wort) -> Alle Objekte des Modells werden dupliziert
INPLACE || TRUE: Alle duplizierten Objekte befinden exakt an der gleichen Position
FALSE: Alle duplizierten Objekte werden räumlich verschoben

Beschreibung Durch Objekt-Referenzen oder Selektionen bezeichnete Objekte werden
wahlweise an derselben Position oder seitlich verschoben dupliziert. Der
Vorgang des Duplizierens kopiert nicht nur das äussere Erscheinungsbild des
ursprünglichen Objektes sondern auch seine allgemeinen und physikalischen
Eigenschaften. Das neue Objekte befindet sich immer am Ende der Liste des
ObjectTool’s und kann mit der Variablen ‘LAST_OBJECT’ ggf. referenziert
werden.



62

Links

Erzeugen

Links sind punktförmige elastische Verbindungen zwischen Objekten. Links
können unter Spannung ein elastisch-plastisches Verhalten haben. Sehen Sie
dazu ‘Gruppeneigenschaften / Materialmodell’

Syntax
Normaler Link

CREATE LINK (K1, NORMAL, O1, O2, x0,y0,z0)
CREATE LINK (K1, NORMAL, O1, O2, E1)
CREATE LINK (K1, NORMAL, O1, F1)
k1: erzeugte Link Referenz
NORMAL, CTR120: reservierte Worte
o1, o2: die beiden zu verbindenden Objekte
x0, y0, z0: globale kartesische Raumkoordinaten
e1: statt explizit die Koordinaten (x0, y0, z0) zu übergeben, kann auch ein bereits erzeugtes 
Element ‘E1’ vom Typ ‘POINT’ den Ort des Links spezifizieren.
f1: eines der beiden Objekte kann auch ein Fixpunkt sein. Die Angabe der Position erübrigt sich in
diesem Fall.

BeschreibungEin normaler Link, erzeugt mit dem Parameter ‘NORMAL’, ist vergleichbar mit
einer Zug- oder Druckfeder. Ein normaler Link reagiert in diesem Sinn auf
Längenänderungen. Ein normaler Link hat im Moment der Erzeugung die
Länge Null. Entstehen im Laufe der Simulation Verschiebungen und damit
Spannungen zwischen zwei verlinkten Objekten, dann bekommt der Link
eine endliche Länge. Zusammen mit den Link-Konstanten und weiteren
Einflussgrössen wird daraus die Linkkraft berechnet, welche der Auslenkung
des Links entgegenwirkt. Sowohl die Steifigkeit als ggf. andere Eigenschaften
des Links werden mit separaten Anweisungen gesetzt. Die obigen
Anweisungen versehen den neuen Link vorerst mit den sog. Default-Link-
Eigenschaften. Deshalb folgen in einem sonar script einem neuen Link in der
Regel weitere Anweisungen welche die spezifischen Eigenschaften des Links
setzen.

Syntax
Biege- und Torsions-Link

CREATE LINK (K1, BENDING, O1, O2, x0,y0,z0)
CREATE LINK (K1, TORSION, O1, O2, x0,y0,z0)

k1: erzeugte Link Referenz
BENDING, TORSION: reservierte Wörter
o1, o2: Referenzen auf vorhandene Objekte
x0, y0, z0: globale kartesische Raumkoordinaten

BeschreibungBiege- und Torsions-Links sind zusätzliche Links, die am Ort eines bereits
gesetzten normalen Links angebracht werden können. Diese beiden
zusätzlichen Links halten die beiden Objekte aber nicht wirklich zusammen,
so wie das ein normaler Link kann, sondern üben nur noch zusätzliche Kräfte
aus. Aus diesem Grund müssen Biege- und/oder Torsions-Links immer
zusammen mit normalen Links verwendet werden. Eine Link-Kombination
bestehend aus allen drei Linksorten kontrolliert schliesslich alle möglichen
Bewegungen welche zwischen zwei Objekten auftreten können. Das
folgende Script erzeugt zwei Zylinder und verbindet sie mit allen drei Link-
Arten

BeispielBEGIN SCRIPT Verbindung
-- Erzeuge 2 Zylinder und verbinde sie mit 3 Link-Arten
63

CREATE OBJECT (O1, CYLINDER, 0, 0, 0.0, 0, 0, 6.0, 0.5)
CREATE OBJECT (O2, CYLINDER, 0, 0, 6.0, 0, 0, 12.0, 0.5)
CREATE LINK (K1, NORMAL, O1, O2, 0, 0, 6.0)
CREATE LINK (K2, BENDING, O1, O2, 0, 0, 6.0)
CREATE LINK (K3, TORSION, O1, O2, 0, 0, 6.0)
-- end of script

weitere Erzeugungsmethoden

Syntax CREATE LINK (K1, NORMAL, SELECTION)

k1: erzeugte Link Referenz
NORMAL, SELECTION: reservierte Wörter

Beschreibung Anstelle dass zur Erzeugung eines Links entsprechende Objektreferenzen
und Koordinaten angegeben werden, kann vorab eine Selektion von
gleichwertigen Information selektiert werden. Konkret müsste man in diesem
Fall zwei verschiedene Objekte und einen Rohdatenpunkt selektieren, bevor
diese Anweisung aufgerufen wird. Diese Selektion muss natürlich auch im
gleichen Script mit den entsprechenden Selektions-Anweisungen
durchgeführt werden. Allerdings sind auf diesem Weg auch Selektionen von
Objekten möglich, welche in einem anderen Script erzeugt wurden (siehe
Primitives/Selektieren).

Syntax CREATE LINK (K1, NORMAL, CTR120, O1, O2)
CREATE LINK (K1, NORMAL, CTR120, O1, O2, mode)

k1: erzeugte Link Referenz
o1, o2: Referenzen auf vorhandene Objekte
NORMAL: reserviertes Wort
CTR120: reserviertes Wort. Es sollen 4 Links gesetzt werden, einer im Zentrum und 3 an der
Peripherie.
mode: {STRAIGHT, DEFLECTED}
STRAIGHT: zero angle in the straight position between two objects.
DEFLECTED: zero angle in the actual and relativ object position (as it is)

Beschreibung







Um zwei Objekte, wie z.B. zwei einzelne Zylinder eines biegsamen Stabes,
elastisch und formfest zu verbinden, gibt es die folgenden Methoden:

• Normal Link + Biege-Link + Torsions-Link -> sog. NBT-Link
• 3 normale periphere Links (3 x 120°)
• 1 normaler Zentral-Link + 3 normale periphere Links -> sog. CTR120-Link

Der sog. CTR120-Link ist bezüglich der Einstellung der physikalischen
Eigenschaften flexibler als die einfachere Kombination mit nur drei
peripheren Links. In einem CTR120-Link können die peripheren Links so
eingestellt werden, dass sie unter der Annahme eines zentralen Scharniers
die Biege- oder Torsions-Steifigkeit optimal wiedergeben. Der zentrale Link
kann anschliessend unabhängig davon so bemessen werden, dass er mit den
peripheren Links zusammen den E-Modul korrekt berechnet. Die genaue
Einstellung der einzelnen Links wird nicht mit dieser Anweisung durchgeführt
sondern anschliessend mittels der Funktion ‘SET VALUE (E_MODUL =
double, ...)’ festgelegt. Diese Funktion berechnet dann unter
Berücksichtigung der Dimensionen der einzelnen Objekte einer Gruppe die
einzelnen Link-Konstanten der CTR120-Links.

Beim einfacheren Kombinationslink mit lediglich drei peripheren Links
übernimmt jeder Link 1/3 des Emoduls. Anschliessend werden die drei Links
radial soweit vom Zentrum angeordnet, dass sie mit den gegebenen Link-
64

Konstanten und Objektdimensionen auch die Biegesteifigkeit korrekt
wiedergeben.

Die Anweisung ist auf bestimmte Objektkombinationen beschränkt. Folgende
Paarungen sind bisher zugelassen:

• Zylinder - Zylinder
• Zylinder - Torus-Segment
• Zylinder - Kugel

SyntaxCREATE LINK (K1, NORMAL, AUTOMATIC, E1)
CREATE LINK (K1, NORMAL, AUTOMATIC, E1, O1)
CREATE LINK (K1, NORMAL, AUTOMATIC, CTR120, E1)

k1: Link Referenz auf den neuen Link
e1, o1: Referenzen auf entsprechende Objekt-Arten
NORMAL, AUTOMATIC, CTR120: reservierte Worte

BeschreibungDer Parameter ‘AUTOMATIC’ will uns sagen, dass die Verbindung am Ort der
Position von Element ‘E1’, geschehen soll, die betroffenen Objekte aber von
der Funktion selbst gefunden werden sollen.

In der zweiten Anweisung wird ein zusätzliches Objekt ‘O1’ referenziert. In
diesem Fall soll folglich nur noch das zweite, dazu passende, Objekt
gefunden werden.

Im letzten Fall sollen am Ort der Position von Element ‘E1’ insgesamt vier
Links gesetzt werden, welche zusammen einen sog. CTR120-Link bilden
(sehen Sie dazu ‘CREATE LINK (K1, NORMAL, CTR120, O1, O2)’ in diesem
Kapitel)

Ganze Objektgruppen Linken

SyntaxATTACH OBJGRP_OBJGRP(O1, O2, mode)

o1, o2: Referenzen auf vorhandene Objekte
mode: NORMAL, NBT, CTR120, 3x120: reservierte Parameter

BeschreibungBeide Objekt-Referenzen (O1, O2) sind Repräsentanten einer Objektgruppe.
Es werden allerdings nicht alle Objekte der einen Gruppe mit allen Objekten
der anderen Gruppe verlinkt. Vielmehr überprüft das System. welche
Objektpaarungen sinnvoll zusammenpassen und verlinkt nur diese. Die
Kombination der Objekte geschieht dabei nach der Methode, wo jedes Objekt
der einen Gruppe überprüft, ob es ein Objekt in der anderen Gruppe gibt,
welches mit dem ersten überlappt oder dieses berührt.
(ev. gehört diese Funktion zu einem Modul)

Link-Konstante setzen

SyntaxSET PROPERTY(K1, C_LINK, value)

k1: Link Referenz
C_LINK: reserviertes Wort
value: Link Konstante (Fliesskommawert)

BeschreibungDies ist die meistgebrauchte Standardfunktion zum Setzen von Link-
Konstanten. Man benötigt sie praktisch in allen scripts wo Links gesetzt
werden. Sie wird auf einen einzelnen Link angewendet welcher mit seiner
65

Referenzbezeichnung angegeben wird. Die Anweisung ist auf alle Link Typen
anwendbar.

Syntax SET VALUE (C_LINK = double, linktype, OBJECTNAME, “objectname”)

C_LINK, OBJECTNAME: reservierte Worte
linktype: {NORMAL, BENDING, TORSION}

Beschreibung Allen Links eines bestimmten Typs in Verbindung mit Objekten eines
gewissen Namens wird ein neuer Wert für die betreffende Link-Konstante
zugewiesen. Es gibt zwar ähnliche Funktionen für Objektgruppen, aber hier
wählen wir nicht eine bestimmte Gruppe von Objekten aus, sondern alle mit
einem bestimmten Namen, der natürlich vorher durchgehend gesetzt worden
sein muss.

Beispiel SET VALUE (C_LINK = 0.1, BENDING, OBJECTNAME, “Drahtelement”)

Beachten Sie, dass die ‘Gänsefüsschen’ beim Objektnamen auch gesetzt
werden müssen.

Syntax SET GROUP_PROPERTY(O1, C_LINK, CTR120, K_ctr, K_r)

k1: Link Referenz
C_LINK: reserviertes Wort
K_ctr, K_r: Link Konstanten (Fliesskommawerte)

Beschreibung Diese Anweisung bezieht sich auf alle Links einer Objektgruppe welche mit
der Link-Kombinationen des Typs ‘CTR120’ verbunden sind. Ein CTR120-Link
besteht aus insgesamt vier Links (1 Zentral-Link und 3 periphere Links).
Referenziert werden diese Links mit einem Objekt ‘O1’ der Objektgruppe. Die
beiden letzten Parameter ‘K_ctr’ und ‘K_r’ sind die eigentlichen Link-
Konstanten und zwar zuerst die Link-Konstante für den zentralen Link und
anschliessend diejenige für die drei peripheren Links. Mit dieser Anweisung
werden die Link-Konstanten der CTR12-Links nicht automatisch berechnet
sondern vom Benutzer explizit vorgegeben.

Eigenschaften setzen

Syntax SET PROPERTY(K1, C_DAMPING, double)
SET PROPERTY(K1, ANGLE, {X|Y|Z}, double) -- K1 = Torsions Link
SET PROPERTY(K1, MOMENT_FRICTION, double) -- K1 = normaler Link
SET PROPERTY(K1, C_LINK, CTR120, Kc, Kr) -- K1 = 1 von 4 Links

K1: Link Referenz des neuen Links
ANGLE, C_DAMPING. C_LINK, MOMENT_FRICTION: reservierte Worte
{X|Y|Z}: Es wird eine Koordinatenrichtung gesetzt (X oder Y oder Z)
double: Fliesskommawert
Kc: central Link; Kr: lateral Link

Beschreibung Die erste Anweisung setzt die Dämpfungskonstante eines bestimmten Links
welcher mit ‘K1’ referenziert ist. Auch diese Anweisung ist für alle Link-Typen
einsetzbar.

Mit dem Parameter ‘ANGLE’ sprechen wir in der zweiten Anweisung den
Winkel eines Torsions-Links an, welcher in der aktuellen Drehlage der beiden
Objekte die er verbindet einem bestimmten Drehwinkel entsprechen soll. Die
beiden Objekte hätten dann zum Zeitpunkt des Simulationsstarts bereits ein
66

Drehmoment zueinander. Die Funktion kann nur für die drei
Hauptachsenrichtungen benutzt werden

Die dritte Anweisung setzt eine Lagerreibung. Bei jeder Drehbewegung wirkt
auf die beiden Objekte, die durch den (normalen) Link ‘K1’ verbunden sind,
ein Widerstandsmoment welches der aktuellen relativen Drehrichtung
entgegenwirkt. Ist die relative Drehbewegung zwischen den beiden Objekten
gleich Null, dann ist auch das Widerstandsmoment gleich Null.

Die letzte Anweisung berifft einen einzelnen CTR120 Link.

Biegefestigkeit

SyntaxSET VALUE (BENDING_STRENGTH = value, GROUP_NR,
 LAST_GROUP_NR, f)
SET VALUE (BENDING_STRENGTH = value, SUPERGROUP_NR,
 LAST_SUPERGROUP_NR, f)

BENDING_STRENGTH, GROUP_NR, LAST_GROUP_NR, SUPERGROUP_NR. LAST_SUPERGROUP_NR:
reservierte Worte
f: reduction or multiplication factor: mehrere Biege-Links zwischen 2 Objekten oder ein Hüllzylinder
repräsentiert mehrere Drähte.
value: Fliesskommawert

BeschreibungDiese Anweisung richtet sich ausschliesslich an sog. Bending-Links und nur
diese werden berücksichtigt. Im Uebrigen ist diese Funktion bislang nur für
Zylinder-Verbindungen implementiert. Es wird das maximale Biegemoment
zwischen zwei Zylindern festgelegt. Damit wird mit den gegebenen Link-
Konstanten der Bending-Links indirekt auch ein maximaler Biegewinkel
vorgegeben. Wird während einer Simulation der Biegewinkel zwischen den
betreffenden Objekten grösser als der Maximalwert, dann wird das
Biegemoment jeweils auf den definierten Maximalwert zurückgesetzt.

Mit der nächsten Anweisung kann dieser maximale Grenzwert für das
Biegemoment ein- oder ausgeschaltet werden.

SyntaxSET STATE (BENDING_STRENGTH, ON || OFF, GROUP_NR,

 LAST_GROUP_NR)
SET STATE (BENDING_STRENGTH, ON || OFF, SUPERGROUP_NR,

 LAST_SUPERGROUP_NR)


BENDING_STRENGTH, GROUP_NR, LAST_GROUP_NR, SUPERGROUP_NR. LAST_SUPERGROUP_NR:
reservierte Worte
ON oder OFF: bool’sche Werte (reservierte Worte)

Beispiel

Das folgende Beispiel erzeugt einen Draht bestehend aus einer Kette von
zylindrischen Objekten und verbindet die Zylinder paarweise. Der letzte
erzeugte Zylinder wird jeweils mit dem vorangehenden mit drei Links
verbunden (NBT-Link).

BEGIN SCRIPT Draht
-- Drahtdurchmesser = 1.0 mm
-- Drahtlänge = 60.0 mm
LOOP FOR (I, 1, 20, 1)
 CREATE OBJECT (O1,CYLINDER,0, 0, (I-1)*0.6, 0, 0, I*0.6, 0.05)
67

 DO IF (I>1)
 CREATE ELEMENT (E1, POINT, 0, 0, (I-1)*0.6) -- Link-Punkt

 DESELECT ALL
 SELECT ELEMENT (E1)
 SELECT OBJECT (LAST_OBJECT - 1)
 SELECT OBJECT (LAST_OBJECT)

 CREATE LINK (K1, NORMAL, SELECTION) -- NBT Link
 CREATE LINK (K2, BENDING, SELECTION)
 CREATE LINK (K3, TORSION, SELECTION)

 SET PROPERTY(K1, C_LINK, 0.1)
 SET PROPERTY(K2, C_LINK, 0.02)
 SET PROPERTY(K3, C_LINK, 0.008)
 END IF
END FOR
-- end of script
68

Fixpunkte

Fixpunkte sind masselose, unbewegliche Ankerpunkte im Raum. Fixpunkte
haben keine physikalischen Eigenschaften. Ihre Aufgabe besteht einzig darin,
mittels Links gewisse Objekte daran befestigen zu können. Daraus ist
ersichtlich, dass das befestigte Objekt selbst elastisch am Fixpunkt befestigt
ist. Das befestigte Objekt kann sich im Rahmen der Elastizität des Links noch
um den Fixpunkt herum bewegen. Deshalb ist es auch möglich die wirkenden
Kräfte zwischen Objekt und Fixpunkt aufzuzeichnen oder anderweitig zu
verwenden. Fixpunkte ohne angedockte Objekte haben keine Funktion und
sind überflüssig.

Erzeugen

MakroCREATE FIXPOINT (F1, x0, y0, z0)
CREATE FIXPOINT (F1, SELECTION)

F1: Fixpunkt Referenz {f1, f2, f3, ...}
x0, y0, z0: kartesiche Koordinaten des Fixpunktes
SELECTION: (reserviertes Wort) -> ein Rohdatenpunkt muss selektiert sein.

BeschreibungDie Position des zu erzeugenden Fixpunktes kann entweder explizit mit den
Koordinaten angegeben oder durch eine vorangehende Selektion eines
Punktes vermittelt werden. Die Anweisung erzeugt eine Referenzbezeichnung
welche bei der Erzeugung eines Links zwischen Objekt und Fixpunkt
verwendet werden kann.

Selektieren

MakroSELECT FIXPOINT (F1)

F1: Fixpunkt Referenz {f1, f2, f3, ...}

BeschreibungDie Anweisung kann dazu benutzt werden um einen Links zwischen
selektierten Objekten zu setzen, wobei eines der selektierten Objekte ein
Fixpunkt sein kann.

Links an Fixpunkten

Makro 1CREATE LINK (K1, NORMAL, O1, F1)

K1: Link Referenz {k1, k2, k3, ...}
NORMAL; reserviertes Wort
O1, F1: Objekt- und Fixpunkt-Referenz zwischen denen der Link gesetzt werden soll.

Makro 2CREATE LINK (K1, NORMAL, SELECTION)

K1: Link Referenz {k1, k2, k3, ...}
NORMAL; reserviertes Wort
SELECTION: reserviertes Wort
69

Beschreibung In ‘Makro 2’ darf höchstens eines der beiden selektierten Objekte ein
Fixpunkt sein. Die Reihenfolge der Selektion spielt keine Rolle. Die Link-
Eigenschaften werden wie üblich separat mit dem Kommando
 ‘SET PROPERTY (K1, ...)’ festgelegt.
70

Gruppeneigenschaften

Ueberblick

BeispielWir unterscheiden im Moment zwei Stufen von Gruppen. Es sind dies die
normale Gruppe und die Supergruppe. Die Supergruppe ist dazu gedacht
Gruppen von Gruppen zu bilden. Allerdings ist dies keine Voraussetzung. Ein
Objekt kann grundsätzlich auch einer Supergruppe angehören ohne Mitglied
einer untergeordneten Gruppe zu sein. Im Prinzip handelt es sich bei dieser
Terminologie einfach um zwei unterschiedliche Gruppennummern die ein
Objekt haben kann. Aber die Idee dahinter ist letztlich schon die, dass der
Benutzer diese Gruppenbezeichnungen in einer hierarchischen Art und Weise
einsetzt.

Ein typisches Beispiel für die Verwendung dieser beiden Gruppen wäre ein
Maschengitter wie nebenstehend abgebildet. Man würde den einzelnen
Drähten, welche aus einer grösseren Anzahl von Zylinderelementen
bestehen, jeweils eine individuelle Gruppennummer geben. Allen Drähten
des gesamten Gitters zusammen würde man zusätzlich eine gemeinsame
Supergruppennummer geben. Jedes Zylinderelement des Gittermodells hätte
so eine Supergruppennummer, welche das Objekt als Mitglied eines
bestimmten Gitters charakterisiert und zusätzlich eine Gruppennummer
welche angibt, zu welchem Draht in diesem Gitter das Objekt gehört.

Der Sinn für diese Bezeichnungen ist letztlich, für die Vergabe von
Eigenschaften gezielt auf die Objekte zugreifen zu können und gewisse
Eigenschaften gleichsam für die ganze Gruppe oder Supergruppe zu setzen.
Das Vergeben von Gruppennummern ist grundsätzlich nicht zwingend, aber
empfohlen. Man sollte sich bei der Organisation der Objekte in Gruppen
immer die Ueberlegung machen, welche Objekte man eventuell später zum
Setzen oder Aendern von Eigenschaften als Gruppe ansprechen möchte.

Gruppennummer Erzeugen

SyntaxSET VALUE (NEW_GROUP_NR)
SET VALUE (NEW_SUPERGROUP_NR)

NEW_GROUP_NR, NEW_SUPERGROUP_NR: reservierte Worte

BeschreibungDiese beiden Anweisungen erzeugen eine neue Gruppen- resp.
Supergruppen-Nummer. Dies geschieht, indem das System die höchste
existierende Nummer im Modell ermittelt, diese um Eins erhöht und intern
als neue letzte Gruppen- bzw. Supergruppen-Nummer speichert. Diese
aktuellen letzten Gruppennummern können jederzeit mit den Variablen
‘LAST_GROUP_NR’ und ‘LAST_SUPERGROUP_NR’ abgefragt bzw. als Parameter
weiterverwendet werden. Diese Nummern können in der Folge beliebig vielen
Objekten zugewiesen werden. Normalerweise geschieht das in einem ‘sonar
script’ innerhalb von Schleifen (Loops).
71

Einzelne Objekte zu Gruppe hinzufügen

Syntax SET PROPERTY (O1, GROUP_NR, LAST_GROUP_NR) (*)
SET PROPERTY (O1, SUPERGROUP_NR, LAST_SUPERGROUP_NR) (*)

O1: Objekt Referenz
(*) O1 ist hier ein bestimmtes einzelnes Objekt
GROUP_NR, SUPERGROUP_NR: reservierte Worte
LAST_GROUP_NR, LAST_SUPERGROUP_NR: ganze Zahl (die letzten erzeugten Gruppennummern)

Beschreibung Einem einzelnen referenzierten Objekt ‘O1’ wird die letzte erzeugte Gruppen-
resp. Supergruppen-Nummer zugesprochen. Der zweite Parameter
(GROUP_NR, SUPERGROUP_NR) gibt an, welche Sorte von Gruppennummer in
diesem Zusammenhang gemeint ist bzw. gesetzt werden soll. In den
Objekteigenschaften des betreffenden Objektes wird fortan angezeigt, dass
dieses Objekt die betreffende Gruppennummer besitzt.

Gruppe zu Supergruppe hinzufügen

Syntax SET GROUP_PROPERTY (O1, SUPERGROUP_NR, LAST_SUPERGROUP_NR) (**)
SET GROUP_PROPERTY (LAST_GROUP_NR, SUPERGROUP_NR,
 LAST_SUPERGROUP_NR)

O1: Objekt Referenz
(**) O1 ist hier ein Repräsentant einer Objektgruppe
SUPERGROUP_NR: reservierte Worte
LAST_GROUP_NR, LAST_SUPERGROUP_NR: ganze Zahl (die letzten erzeugten Gruppennummern)

Beschreibung Die erste Anweisung heisst in Worten: Die Objektgruppe, repräsentiert mit
der Objektreferenz ‘O1’, soll der Supergruppe mit der Nummer ‘letzte
Supergruppe’ hinzugefügt werden.

Analog hat die zweite Anweisung die Bedeutung: Die Objektgruppe mit der
Nummer ‘letzte Objektgruppe’ soll der Supergruppe mit der Nummer ‘letzte
Supergruppe’ hinzugefügt werden.

Beachten Sie, dass hier die Anweisung ‘SET GROUP_PROPERTY’ benutzt wird,
was darauf hindeutet, dass eine Gruppeneigenschaft gesetzt wird. Deshalb
hat der erste Parameter ‘O1’ hier die Funktion eines Repräsentanten einer
Objektgruppe.

Gruppeneigenschaften benutzen

Die meisten Eigenschaften können in ‘sonar script’ wahlweise entweder
einzelnen Objekten oder Gruppen zugesprochen werden. Während im ersten
Fall die Anweisung ‘SET PROPERTY’ verwendet wird benutzt man im zweiten
Fall ‘SET GROUP_PROPERTY’ bzw. ‘SET SUPERGROUP_PROPERTY’.

SET PROPERTY -> Objekt
SET GROUP_PROPERTY -> Gruppe
SET SUPERGROUP_PROPERTY -> Supergruppe

Im Folgenden werden ein paar Anweisungen zu den Gruppeneigenschaften
als Ueberblick aufgeführt. Zu den Details der einzelnen Parameter in den
Funktionen sehen Sie die entsprechende Funktion für einzelnen Objekte 
’SET PROPERTY (O1, ...)’.
72

UeberblickDie object reference ‘O1’ kann wahlweise ersetzt werden durch:

O1 || LAST_GROUP_NR || LAST_SUPERGROUP

Der qualifier ‘GROUP_PROPERTY’ kann in Abstimmung mit der Objekt Referenz
wahlweise ersetzt werden durch ‘SUPERGROUP_PROPERTY’.

SET GROUP_PROPERTY(O1, VELOCITY, {X|Y|Z}, vAbs)
SET GROUP_PROPERTY(O1, C_DAMPING, BENDING, double)
SET GROUP_PROPERTY(O1, C_DAMPING, NORMAL, double)
SET GROUP_PROPERTY(O1, C_DAMPING, TORSION, double)
SET GROUP_PROPERTY(O1, C_LINK, BENDING, double)
SET GROUP_PROPERTY(O1, C_LINK, NORMAL, double)
SET GROUP_PROPERTY(O1, C_LINK, TORSION, double)
SET GROUP_PROPERTY(O1, DENSITY, double)
SET GROUP_PROPERTY(O1, ROTATION_LOCKED, X|Y|Z, bool,
 ALL || FIRST_LAST)
SET GROUP_PROPERTY(O1, COLOR_STD, 4)
SET GROUP_PROPERTY(O1, COLOR_RGB, 255, 0, 0)
SET GROUP_PROPERTY(O1, C_LINK, STRAIN_LIMIT,
 PERCENT || ABSOLUTE, double)
SET GROUP_PROPERTY(O1, C_LINK, STRENGTH_CALC, mode, value, fac)
SET GROUP_PROPERTY(O1, C_LINK,STRENGTH_ULTIMATE, mode,value,fac)
SET GROUP_PROPERTY(O1, C_LINK, UNLIMITED, bool)
SET GROUP_PROPERTY(O1, C_LINK, OVERLOAD_ACTION, action)
SET GROUP_PROPERTY(O1, C_LINK, MATERIAL_MODEL, modelNr)
SET GROUP_PROPERTY(O1, C_LINK, CTR120, K_ctr, K_r)
SET GROUP_PROPERTY(O1, C_INTERACT_LIN, double)
SET GROUP_PROPERTY(O1, C_INTERACT_QUAD, double)
SET GROUP_PROPERTY(O1, FORCE_EXT, {X|Y|Z}, double)
SET GROUP_PROPERTY(O1, INTERACT_METHOD, ELASTIC, value)
SET GROUP_PROPERTY(O1, INTERACT_MODE, {ACTIVE,PASSIVE,..})
SET GROUP_PROPERTY(O1, NAME, “groupname”)
SET GROUP_PROPERTY(O1, YIELD_MODEL, modelNr)
SET GROUP_PROPERTY(O1, SIM_MEMBER, FALSE)
73

Materialmodelle

Ueberblick

FIGURE 8. Der Dialog ‘Edit Material (Stress/Strain-Variables)’

Um die sonar-script-Anweisungen zu den Materialmodellen ins Spiel zu
bringen orientieren wir uns am Dialog aus dem sonar-LAB Programm welcher
dem gleichen Zweck dient. Der Benutzer hat nach der Selektion eines
Objektes einer Gruppe den abgebildeten Dialog vor sich. An dieser Stelle sei
nochmals wiederholt, dass der Einsatz dieser Materialmodelle nur in
Zusammenhang mit Objektgruppen bestehend aus einer grösseren Anzahl
von Objekten einen Sinn macht. Es geht um die kontinuierliche Belastung
und Verbiegung von Objektstrukturen.

• Rechts oben wählt der Benutzer ein Modell. Die Anzahl der zur Verfügung
stehenden Materialmodelle wird im Laufe der Zeit stetig anwachsen.

• Darunter hat er die Möglichkeit, je nach Modell mehr oder weniger
Materialdaten einzugeben. Wir haben zu diesem Zweck beispielhaft das
Materialmodell-005 ausgewählt, welches alle Variablen bzw. alle
Eingabefelder zur Verfügung stellt.

Wir wollen nun der Reihe nach die entsprechenden sonar-script-Anweisungen
erklären.

• Materialmodell
• Elastizitätsmodul
• Streckgrenze
• Bruchspannung
74

• Dehngrenze (%)
• Aktion bei Ueberlast
• Unbeschränkte Dehnung

Materialmodell

SyntaxSET GROUP_PROPERTY(O1, C_LINK, MATERIAL_MODEL, modelNr)

O1: Objekt Referenz. O1 ist hier ein Repräsentant einer Objektgruppe
C_LINK, MATERIAL_MODEL: reservierte Worte
modelNr: ganze Zahl (Materialmodell-Nr = 1, 2, 3, ...)

BeschreibungFür alle Objekt welche zur selben Gruppe gehören wie die Objektreferenz
‘O1’ soll das Materialmodell mit der Nummer ‘modelNr’ eingestellt werden.
Obwohl wir die Modellnummer im Dialog mit
“005_LINEAR_ELASTIC_LINEAR_ISOTRPIC_HARDENING” bezeichneten,
geben wir in der obigen sonar-Anweisung für die ‘modelNr’ einfach die Zahl
‘5’ an.

BeispielSET GROUP_PROPERTY(O1, C_LINK, MATERIAL_MODEL, 5)

Elastizitätsmodul (young modulus)

SyntaxSET VALUE(E_MODUL = double, GROUP_NR, LAST_GROUP_NR, f)
SET VALUE(E_MODUL = double, SUPERGROUP_NR, LAST_SUPERGROUP_NR, f)

E_MODUL, GROUP_NR, LAST_GROUP_NR, SUPERGROUP_NR, LAST_SUPERGROUP_NR: 
reservierte Worte
f: reduction factor [0..1]: mehrere Normal-Links zwischen 2 Objekten

BeschreibungDer E-Modul nach dem Gesetz von R.Hooke postuliert die Proportionalität
zwischen relativer Längenänderung und Normalspannung in einem
beschränkten Bereich der Belastung. Alle Link-Konstanten zwischen den
Objekten der Gruppe werden so berechnet, dass die Elastizität dem
gesetzten Wert entspricht. Dabei werden ggf. sog. Mehrfachlinks mit einem
Faktor f berücksichtigt.

BeispielSET VALUE(E_MODUL = 2.1, GROUP_NR, LAST_GROUP_NR, 0.333)

Den Wert 0.333 würden wir setzen, wenn jeweils 3 normale Links die Objekte
verbinden. Für einen Wert von 2.1E+11 Pascal, wie er z.B. für Stahl gilt,
ergibt sich im [cm-g-us]-System der Wert 2.1

2.1E+11 Pa = 2.1E+11 N/m2 
= 2.1E+11 kg m/s2m2 = 2.1E+11 E+3 g E+2 cm / (E+12 µs2 E+4 cm2)
= 2.1 E+0 g/µs2cm

Streckgrenze (yield strength)

SyntaxSET GROUP_PROPERTY(O1, C_LINK, STRENGTH_CALC, mode, value, fac)

O1: Objekt Referenz. O1 ist hier ein Repräsentant einer Objektgruppe
C_LINK. STRENGTH_CALC: reservierte Worte
mode: SPECIFIC || ABSOLUTE,
value: yield strength [cm-g-us]-System
75

fac: reduction factor [0..1]: mehrere Normal-Links zwischen 2 Objekten

Beschreibung Gemeint ist streng genommen die Spannung an der Streckgrenze. Es ist der
Grenzwert im Spannungs-Dehnungs-Diagramm, wo das Hooke’sche Gesetz
seine Gültigkeit verliert und eine bleibende plastische Verformung einsetzt.
Der Wert für die Streckgrenze kann auf zwei unterschiedliche Arten
festgelegt werden: absolut oder spezifisch (ABSOLUTE, SPECIFIC). ‘Absolut’
bezieht sich auf die gesamte Querschnittsfläche am Ort wo der Link
eingebaut wird, während ‘spezifisch’ sich auf die Einheitsfläche bezieht. Der
Reduktionsfaktor ‘fac’ berücksichtigt Mehrfachlinks an der fraglichen
Querschnittsfläche. Würden zwei Zylinder stirnseitg von 3 Links
zusammengehalten, dann würde man für ‘fac’ den Wert ‘0.333’ einsetzen um
die Festigkeit gleichmässig auf alle drei Links zu verteilen.

Bruchspannung

Syntax SET GROUP_PROPERTY(O1, C_LINK, STRENGTH_ULTIMATE, mode,value,fac)

O1: Objekt Referenz. O1 ist hier ein Repräsentant einer Objektgruppe
C_LINK. STRENGTH_ULTIMATE: reservierte Worte
mode: SPECIFIC || ABSOLUTE 
value: ultimate strength [cm-g-us]-System
fac: reduction factor [0..1]: mehrere Normal-Links zwischen 2 Objekten

Beschreibung Die Bruchspannung ist die Spannung am Ende der Dehnphase, also an der
Dehngrenze wenn das Material bricht und die Spannung auf Null absinkt.
Dieser Vorgang ist irreversibel.

Dehngrenze (strain limit)

Syntax SET GROUP_PROPERTY(O1, C_LINK, STRAIN_LIMIT, mode, value)

O1: Objekt Referenz. O1 ist hier ein Repräsentant einer Objektgruppe
C_LINK. STRAIN_LIMIT: reservierte Worte
mode: PERCENT || ABSOLUTE
value: Dehngrenze [cm-g-us]-System

Beschreibung Die Dehngrenze ist der Ort wo das Versagen des Materials eintritt. In der
Regel benutzen wir in dieser Anweisung den Parameter ‘PERCENT’ und geben
die Dehngrenze in Prozent der relativen Dehnung an.

Dehnung: = L/L0
Dehnung in Prozent: 100 * L/L0

Die absolute Dehngrenze (Parameter ABSOLUTE) ist im Gegensatz dazu eine
Verlängerung in [cm].

Aktion bei Ueberlast

Syntax SET GROUP_PROPERTY(O1, C_LINK, OVERLOAD_ACTION, action)

O1: Objekt Referenz. O1 ist hier ein Repräsentant einer Objektgruppe
C_LINK. OVERLOAD_ACTION: reservierte Worte
action: {NOACTION || BREAKUP || COLORING || SIGNAL}

Beschreibung Für den Fall, dass während einer Simulation ein Bruch eintritt, kann der
Benutzer die resultierende Aktion als Folge dieser Ueberlastung
vorprogrammieren. Nur mit dem Parameter ‘BREAKUP’ tritt tatsächlich ein
76

Bruch ein. Die anderen Aktionen dienen mehr dazu, einen eintretenden
Bruch symbolisch zur Kenntnis zu bringen, sei es durch einen Ton oder durch
das Einfärben des betreffenden Links mit roter Farbe.

Unbeschränkte Dehnung

SyntaxSET GROUP_PROPERTY(O1, C_LINK, UNLIMITED, bool)

O1: Objekt Referenz. O1 ist hier ein Repräsentant einer Objektgruppe
C_LINK. UNLIMITED: reservierte Worte
bool: {TRUE || FALSE}

BeschreibungFalls diese Anweisung mit dem Parameter ‘TRUE’ auf die referenzierte
Objektgruppe angewendet wird, dann wird ein bevorstehender Materialbruch
ignoriert. Die letzte Phase des Spannungs-Dehnungs-Diagramms wird ggf.
weiter linear fortgesetzt, als ob nichts geschehen wäre. Das System benutzt
also in diesem Fall zwar die gesamte Spannungs-Dehnungskurve, so wie sie
mit allen Parametern definiert wurde, aber ignoriert einfach den
bevorstehenden Bruch. Die exakte Definition des Materialmodells wird also
damit nicht überflüssig.

Funktionsparameter

FIGURE 9. Der Dialog ‘Edit Material (Stress/Strain-Function)’

Eine andere Gruppe von Materialmodellen lassen sich nicht mit den
Standardwerten des letzten Kapitels beschreiben. Sie haben ihre eigenen
Funktionen für die Beschreibung der Spannungs-Dehnungs-Abhängigkeit. Ein
Beispiel einer solchen Funktion ist die ‘Johnson-Cook-Funktion’ welche im
Dialog angeschrieben ist. Diese Funktion ist für grosse anhaltende
Krafteinwirkungen geeignet. 
Für jede implementierte Materialfunktion, egal wie sie mathematisch
aufgebaut ist, stehen letztlich bis zu 9 Parameter zur Verfügung, mit denen
der Benutzer die betreffende Funktion spezifizieren kann, analog wie das
oben mit der Johnson-Cook-Funktion angeschrieben wurde. Mit der
folgenden Anweisung lässt sich ein sog. ‘Set’ von Parametern speichern.
77

Damit hat der Benutzer die Möglichkeit, auch für die gleiche Materialfunktion
(z.B. Johnson-Cook) für jedes benutzte Material einen eigenen Satz von
Johnson-Cook-Parametern speichern. Wenn der Benutzer später für einen
Link eine Materialmodell abruft, dann wählt er nebst der eigentlichen
Materialfunktion auch noch das gewünschte Set der Parameter.

Syntax SET VALUE (MATERIAL_PARAM, Index, A, B, C, D, E, F, n1, n2, n3)

MATERIAL_PARAM: reserviertes Wort
Index: ‘Set’-Nummer
A, B, C, D, E, F, n1, n2, n3: zu setzende Parameter (Fliesskommawerte)

Parameter (A...F, n1...n3) welche Sie für das gewählte Modell nicht
benutzen, werden einfach auf Null gesetzt.

Vergleichspannungshypothese (yield model)

SET GROUP_PROPERTY(O1, YIELD_MODEL, modelNr)

modelNr hat die folgenden Zahlenwerte {1..7}:
1 : Rankine Maximum Principal Stress Theory
2 : St.Venant Maximum Principal Strain Theory
3 : Tresca Maximum Shear Stress Theory
4 : Beltrami Haigh Total Strain Energy Theory
5 : Von Mises Distortion Energy Theory
6 : Mohr Coulomb yield criterion
7 : Drucker Prager yield criterion

Als default-Modell wird der Parameter 1 (Rankine) verwendet. Bei reiner
Zuglast liefert dieses Modell gute Näherungswerte.

78

Kontrollsysteme

Wir unterscheiden in der sonar-Software die nachfolgenden Kontrollsysteme
und orientieren uns dabei auch an den entsprechenden Programm-Dialogen
die wir zum Vergleich heranziehen. Einige Kontrollsysteme sind nur als Dialog
in sonar-SIM verfügbar, mit sonar-script können sie z.T. aber bereits in
sonar-LAB erzeugt werden.

Kontrollsysteme

• Punktkurven
- einfache Punktkurve
- externe Punktkurve (File)

• Automatisches Kontrollsystem
• Kontrollsystem mit Formeln
• Lineare Funktion der Zeit
• Bedingung für Simulations-Stop
• Beschränkung der Geschwindigkeit eines bestimmten Objektes
• sonar script Kontrollsystem

Punktkurve

Punktkurven nennen wir eine durch Strecken verbundene Folge von Punkten
(x,y) in einem kartesischen Koordinatensystem welche eine funktionale
Abhängigkeit beschreiben. Sowohl für die X- als auch für die Y-Achse dieser
Kurve kann der Benutzer eine Variable aus einem beschränkten Angebot
auswählen. Es stehen zwei Methoden zur Verfügung Punktkurven zu
definieren. Eine einfache Kurve mit wenigen Datenpunkten kann direkt
zusammen mit den zugehörigen Punkten vorgegeben werden, während
Kurven mit vielen Datenpunkten in einem externen File vorbereitet und mit
der zweiten der beiden nachfolgenden Anweisungen geladen werden.
Vergleichen Sie dazu die beiden Dialoge:

• sonar_LAB / Menu / Functions / New Point Curve...
• sonar_LAB / Menu / Functions / New External Point Curve...

SyntaxCREATE POINT_CURVE(O1, SIMPLE, varX, varY, wx, wy, wz, mode,
 activation, nPoints, x1, y1, ... , xn, yn)

O1: Objekt Referenz. Bezugsobjekt welches durch die Kurve gesteuert wird.
SIMPLE: reserviertes Wort
varX, varY: Bezeichner der beiden Variablen für die X- und Y-Achse (reservierte Worte)
wx, wy, wz: Vektor = Wirkungsrichtung im Raum
mode: Was zu tun ist wenn das Ende der Punktkurve erreicht wird: 0: stop; 1: repeat periodically
activation: Aktivierung der Kurve = Bool’scher Wert {TRUE, FALSE}
nPoints: Anzahl Punkte in der Punktkurve (integer)
x1, y1, ... , xn, yn: kartesische Koordinaten der Punkte (nPoints an der Zahl)

BeschreibungDie Anweisung erzeugt eine neue einfache Punktkurve und stellt alle
notwendigen Informationen, inklusive der Punkte selbst, in einer einzigen
Anweisung zur Verfügung.
79

Syntax CREATE POINT_CURVE(O1, FILENAME, “filename”, varX, varY, wx, wy,
 wz, mode, activation)

O1: Objekt Referenz. Bezugsobjekt welches durch die Kurve gesteuert wird.
FILENAME: reserviertes Wort
“filename”: der vollständige Filepfad des Datenfiles mit den Datenpunkten
varX, varY: Bezeichner der beiden Variablen für die X- und Y-Achse (reservierte Worte)
wx, wy, wz: Vektor = Wirkungsrichtung im Raum
mode: Was zu tun ist wenn das Ende der Punktkurve erreicht wird: 0: stop; 1: repeat periodically
activation: Aktivierung der Kurve = Bool’scher Wert {TRUE, FALSE}

Beschreibung Statt dass die Punktepaare explizit angeschrieben werden, wird der
vollständige Filename eines Files angeschrieben, welches die Punkte enthält.
In folgendem Beispiel ist die gesamte Anweisung auf einer einzigen Linie zu
schreiben.

Beispiel CREATE POINT_CURVE(O3, FILENAME,
“C:\sonar Import\Moment_Welle.txt”, TIME, MOMENT_FORCE_EXT, 
0, 0, -1, 1, FALSE)

Das Beispiel erzeugt eine neue Punktkurve in Form eines Drehmomentes als
Funktion der Zeit welches auf Objekt ‘O3’ wirkt. Die Wirkungsrichtung ist die
Z-Achse im Uhrzeigersinn und das Kontrollsystem bleibt vorläufig noch
ausgeschaltet. Wenn während der Simulation das Ende der Kurve erreicht
werden sollte, dann beginnt die Kurve wieder von vorne.

Automatisches Kontrollsystem

Syntax CREATE CONTROLSYSTEM_AUTO(o1,v1,c1,vl1,vl2, o2,v2,c2,vl3,vl4, a)

Angetriebenes System (driven object):
O1: Objekt Referenz. Bezugsobjekt welches durch die Kurve gesteuert wird.
v1: variable (reserviertes Wort)
c1: component (reserviertes Wort)
v11: Nominalwert, Zielwert, Sollwert
v12: aktueller Wert

Referenzobjekt, Treibendes Objekt, Antriebssystem (driving object):
O2: Objekt Referenz. Bezugsobjekt von welchem Werte abgegriffen werden.
v2: variable (reserviertes Wort)
c2: component (reserviertes Wort)
v13: Startwert
v14: aktueller Wert
a: Aktivierung (Boolscher Wert {TRUE, FALSE})

Beschreibung Ein automatisches Kontrollsystem dieser Form hat eine gewisse Flexibilität in
seiner Wirkungsweise, weil es permanent seinen Ist-Zustand mit dem
angestrebten Sollzustand vergleicht und seine Wirkung gezielt so einsetzt
um den Sollzustand zu erreichen. Das Kontrollsystem schaltet sich folglich
automatisch ein- und aus und kann ggf. auch seine Wirkungsrichtung
ändern. Im Prinzip besteht das Kontrollsystem aus einem angetriebenen
Objekt auf welches z.B. ein Drehmoment einwirkt und einem Referenzobjekt
welches darüber entscheidet ob und in welche Richtung das Drehmoment
wirken soll indem es seinen eigenen Zustand bzw. eine eigene Variable als
Referenz benutzt um diese Entscheidung zu treffen. Die Objektreferenzen
‘O1’ und ‘O2’ dürfen auch gleich sein. 
Das betreffende Objekt würde dann z.B. im Rahmen des Kontrollsystems
sagen, “wenn meine eigene Drehzahl vom angestrebten Sollwert abweicht,
dann lass ich ein Drehmoment auf mich wirken”. Es könnte aber auch
heissen: “Wenn das Drehmoment eines anderen Objektes vom Sollwert
abweicht, dann soll ein Drehmoment auf mich wirken”.
Sehen Sie dazu auch den Dialog ‘Automatic Control Systems’ in ‘sonar-Sim’.
80

Zwangsbewegung (constraint movement)

CREATE CONTROLSYSTEM_CM(o1, x1,y1,z1,t1, x2,y2,z2,t2, active,
stop, mode)

O1: Objekt Referenz. Zwangsbewegtes Objekt.
x1,y1,z1: Startposition des Objektes zur Zeit t1
x2,y2,z2: Endposition des Objektes zur Zeit t2
active: true || false
stop: anhalten bei Erreichen der Endposition (true || false)
mode: parameter {0, 1} 0: no further instructions; 1: ignore all endposition information and take
the actual position of object o1 and the actual time for t1.

BeschreibungDie Funktion überführt das referenzierte Objekt o1 ausgehend von seiner
aktuellen oder gegebenen Ausgangslage im Zeitraum [t1...t2] in die Endlage.
Bei diesem Vorgang wird die aktuelle Position während der Simulation
laufend durch lineare Interpolation berechnet.

Pik = P1k + ((Tik-T1k)/(T2k-T1k))*(P2k-P1k) (EQ 1)

Pi : Position; P1: start; P2: end
T : Zeit; T1: start; T2: end
i : Rechenzyklus 
k : Koordinate x, y, z
81

Uebergeordnete Eigenschaften

Gravitationsfeld Erzeugen

Syntax CREATE FIELD (GRAVITATION, nx, ny, nz, b)

GRAVITATION: reserviertes Wort
nx, ny, nz: Richtungsvektor des Gravitationsfeldes in kartesischen Koordinaten
b: Gravitationsbeschleunigung

Beschreibung Die Anweisung erzeugt ein konstantes und isotropes Gravitationsfeld mit
einer definierten Wirkungsrichtung. Das Feld ist deshalb für alle Modelle im
Labormassstab bis zu Grossanlagen geeignet und ist das Standard-
Gravitationsfeld in sonar. Normalerweise wirkt der Gravitationsvektor in den
Modellen senkrecht nach unten, man hat aber die Freiheit auch gedrehte
Modelle zu definieren indem dieser Vektor in eine andere Richtung zeigt.
Wenn Modelle in astronomischen Dimensionen aufgesetzt werden ist dieses
Gravitationsfeld nicht mehr geeignet und der Einsatz von zentralen
Gravitationsfeldern notwendig. Die folgende Anweisung erzeugt ein
Gravitationsfeld im Labormassstab wie es für die meisten Benutzer immer
wieder eingesetzt werden wird. Der Richtungsvektor zeigt in minus-y-
Richtung, d.h. am Bildschirm senkrecht nach unten und sein Wert entspricht
einem mittleren Wert der Erdbeschleunigung, angegeben im [cm-g-µs]-
System.

Beispiel CREATE FIELD(GRAVITATION, 0.0, -1.0, 0.0, 9.81E-10)

globale Zustände ein/ausschalten

In diesem Abschnitt setzen wir den Zustand von übergeordneten bool’schen
Variablen welche sich nicht auf Objekte oder Objektgruppen, sondern auf das
ganze Modell als Ganzes beziehen.

Syntax SET STATE (FRICTION, bool)
SET STATE (GRAVITATION, bool)

FRICTION, Gravitation, : reservierte Worte
bool: Boolscher Wert. {ON, OFF}. Es kann auch {TRUE, FALSE} verwendet werden.

Beschreibung Die Anweisung schaltet einen globalen Zustand im Modell ein oder aus. Die
Anweisungen sind so gesehen sog. ‘Hauptschalter’ für den betreffenden
Zustand. Wird z.B. die Reibung mit der ersten Anweisung ausgeschaltet,
dann bedeutet dies, dass grundsätzlich keine Reibungen mehr berechnet
werden, welcher Art auch immer und zwischen welchen Objekten diese auch
gesetzt sein mögen. Per default sind die Eigenschaften ausgeschaltet.

Syntax DESELECT ALL

Beschreibung Alle Selektionen, ungeachtet der Objekttypen und der Zusammensetzung der
Elemente, werden deaktiviert. Es gibt anschliessend nichts mehr was
selektiert wäre. Diese Anweisung wird in ‘sonar script’ sehr häufig eingesetzt
82

um zwischen den einzelnen Handlungen sicherzustelle, dass bei neuen
Selektionen die alten gelöscht sind. Die Anweisung ‘DESELECT ALL’ entspricht
im Prinzip einem Mausklick ins Leere in einer Ansicht des Modells.

globale Werte setzen

SyntaxSET VALUE (C_FRICTION_DYNAMIC = double)
SET VALUE (C_FRICTION_STATIC = double)
SET VALUE (TIMESTEP_MAX = double)

reservierte Worte :
C_FRICTION_DYNAMIC: Gleitreibungskoeffizient
C_FRICTION_STATIC: Haftreibungskoeffizient
TIMESTEP_MAX: maximal zulässiger Zeitschritt während der Simulation

BeschreibungMit diesen Anweisungen werden allgemeine modellspezifische Variablen
gesetzt. Den betreffenden globalen Variablen werden durch die Anweisungen
bestimmte neue Zahlenwerte zugewiesen, welche solange gültig bleiben, bis
ggf. etwas anderes definiert wird. Die Reibungswerte betreffen nur die
allgemeinen globalen Werte, d.h. für Objekte für die keine weitergehenden
uni- oder bilateralen Reibwerte festgelegt wurden. Die Variable
‘TIMESTEP_MAX’ setzt für den Zeitschritt eine obere Schranke. Bei einer
autom. Steuerung des Zeitschrittes kann dieser aber auch kleiner bleiben,
falls die Automatik dies für notwendig erachtet. 
83

Halbfabrikate

Seil (Blockmodell)

Syntax CREATE CABLE BLOCKMODEL (x1,y1,z1, x2,y2,z2,
 n0, w0, ro, CTR120, Kc, Kr, C1, C2)

CREATE CABLE BLOCKMODEL (x1,y1,z1, x2,y2,z2,
 n0, w0, ro, K1, K2, K3, C1, C2)

x1, y1, z1, x2, y2, z2: kartesische Koordinaten der Endpunkte des Seils
n0: Anzahl Element längs dem Seil
w0: Drahtdurchmesser
ro: durchschnittliche Materialdichte des Seils auf den Aussendurchmesser bezogen
K1, K2, K3: Link-Konstanten bezüglich Streckung, Biegung, Torsion (outdated)
Kc: center Link, Kr: radial Links (default)
C1, C2: lineare und quadratische Interaktions-Konstanten

Beschreibung Ein Blockmodell eines Seils ist eine Vereinfachung. Das Seil besteht in
diesem Modell nicht aus inneren Litzen und Drähten aus denen sich das Seil
aufbaut und die ihrerseits modelliert werden, sondern man vereinfacht den
gesamten Seilaufbau zu einer durchschnittlichen homogenen Masse mit dem
gegebenen Aussendurchmesser des Seils. Das Seil besteht in diesem Modell
aus einer Kette von Zylindern, welche untereinander elastisch verbunden
sind. Man achtet aber darauf, dass das Seil als Ganzes trotzdem den
wirklichen physikalischen Eigenschaften entspricht. Zu diesem Zweck wird
die Wahl der verschiedenen Steifigkeiten dem Benutzer überlassen, welcher
diese explizit setzen kann (K1, K2, K3) resp. (Kc, Kr). Näherungsweise setzt
der Benutzer diese Parameter gemäss den folgenden Ueberlegungen:

Normalerweise ist K1 resp. Kc die wichtigste Grösse und man setzt diese
longitudinale Steifigkeit so, dass sie der Summe der Steifigkeiten der
einzelnen Drähte entspricht. Die Biegesteifigkeit ist bereits schwieriger
abzuschätzen. Ein Wert von 1.5 mal der Summe der Biegesteifigkeiten der
Einzeldrähte könnte eine grobe Näherung sein. Der Faktor von 1.5 bringt auf
diesem Weg die Reibung unter den Drähten ins Spiel. Wenn man es genauer
wissen will, ist wahrscheinlich ein Versuch angebracht, wo man ein Stück
eines Musterseils über eine Tischkante ragen lässt und den Durchhang misst.
Eventuell muss man das Seil am Ende noch zusätzlich belasten um einen
messbaren Wert zu bekommen. Anschliessend kann man das Ganze in
einem Testmodell in sonar identisch simulieren. In der Simulation ändert
man schliesslich die Biegesteifigkeit des Seilmodells solange bis
Uebereinstimmung vorliegt.

Die Steifigkeit für die Streckung, Biegung und Torsion eines einzelnen
Drahtes berechnet sich wie folgt:

Streckung : K1 = E * Ae / eL (EQ 2)

Biegung : K2 =  * d4 * E / (64 * eL) (EQ 3)

Torsion : K3 =  * d4 * G * / (32 * eL) (EQ 4)

E: Emodul
G: Schub- bzw. Gleitmodul
84

d: Drahtdurchmesser
Ae: Drahtquerschnittsfläche = d2 *  / 4
eL: Elementlänge = Länge der einzelnen Zylinder aus denen sich der Draht aufbaut

Man muss bei diesen Rechnungen darauf achten, dass sie konsequent im
sog. [cm-g-µs]-System durchgeführt und die Resultatwerte in dieser Form in
die Anweisung zur Erzeugung des Blockmodells eingesetzt werden.

Seile dieser Art eignen sich gut für die Simulation von ganzen Anlagen
welche Seile benutzen wie Seil- und Gondelbahnen, Aufzug- und
Förderanlagen, Schutzanlagen, usw. Ueberall dort wo der innere Aufbau nicht
im Zentrum der Betrachtungen steht, sondern das makroskopische Verhalten
von Interesse ist, sind diese Seilmodelle gut geeignet für Simulationen.

Biegsamer Draht, Drahtfeder

SyntaxCREATE WIRE_LINE (x1,y1,z1, x2,y2,z2,
 n0, w0, ro, E, G, C1, C2, mode)

x1, y1, z1, x2, y2, z2: kartesische Koordinaten der Endpunkte des Seils
n0: Anzahl Elemente längs dem Draht
w0: Drahtdurchmesser
ro: Materialdichte
E, G: Emodul, Gleit- bzw. Schubmodul
C1, C2: lineare und quadratische Interaktions-Konstanten
mode: CTR120 (default), EXCL120, (NBT outdated).

BeschreibungAehnlich wie mit dem Blockmodell für ein Seil wird hier ‘de facto’ eine Kette
von Zylindern modelliert welche untereinander elastisch verbunden sind. In
dieser Anweisung gibt der Benutzer allerdings keine Steifigkeiten für einen
bestimmten Link an, sondern hat die Wahl welchen Link-Typ er verwenden
will. Er bestimmt die Steifigkeit des Drahtes durch die Angabe des Emoduls
und des Gleitmoduls. Unter der Voraussetzung, dass man mit dieser
Anweisung die gleichen Parameter setzt wie in den Anwesisungen zur
Erzeugung eines Blockmodells weiter oben, endet das erzeugte Modell beim
gleichen Resultat wie wenn man das Blockmodell für Seile verwendet hätte.
Auch mit dieser Anweisung wird default-mässig die sog. CTR120 Link-
Kombination verwenden, welche für Drähte am besten geeignet ist. Drähte
mit CTR120-Links sind numerisch stabiler als NBT-Links. Mit CTR-120 Links
kann ein Draht in einer Simulation auch plastisch deformiert werden. Und
zwar nicht nur longitudinal sondern auch was die Biegung betrifft.

Biegsamer Drahtring

CREATE WIRE_RING (R, w0, n0, ro, E, G, C1, C2, mode)

R: mittlerer Durchmesser des Drahtringes
w0: Drahtdurchmesser
n0: Anzahl Elemente längs dem Ring
ro: Materialdichte
E, G: Emodul, Gleit- bzw. Schubmodul
C1, C2: lineare und quadratische Interaktions-Konstanten
mode: CTR120 (default), EXCL120, (NBT outdated).

Alles was für den biegsamen Draht gesagt wurde gilt auch für den Drahtring.
Für den Parameter n0 ist 32 ein guter Wert. Weniger als 12 sollte für die
Anzahl Objekte nicht eingesetzt werden. Will man Drahtringe aneinander
hängen, dann müssen diese nach der Erzeugung gegenseitig schräg gestellt
werden, damit ihre Volumina sich nicht durchdringen sondern äusserlich
bestenfalls berühren.
85

Blattfeder

Syntax CREATE SPRING (LEAF, STANDARD, dL, dw, dh,
 n0, ro, E, G, C1, C2, mode)

LEAF, STANDARD: reservierte Worte
dL, dw, dh: Länge, Breite und Dicke der Blattfeder
n0: Anzahl Quader-Elemente längs der Blattfeder
ro: Materialdichte
E, G: Emodul, Gleit- bzw. Schubmodul
C1, C2: lineare und quadratische Interaktions-Konstanten
mode: NNB, NNNN

Beschreibung Es wird eine sog. Standard-Blattfeder mit einem rechteckigen Querschnitt
erzeugt. Die Feder wird längs der Z-Achse bereitgestellt mit einem der
beiden Endpunkte (Querschnittsmittelpunkt) im Ursprung. Die Feder kann
anschliessend mit den üblichen Bewegungsfunktionen für Gruppen in ihre
endgültige Lage gedreht und verschoben werden. Die Feder befindet sich
beim Erzeugen in einem ungebogenen Zustand. Wird als Ausgangspunkt in
einem Modell eine gebogene Feder benötigt, dann muss diese separat mit
einer Hilfssimulation (externe Kraft) in die gewünschte Lage gebracht
werden. Am besten würde man diesen Vorgang mit der betreffenden Feder
allein in einem eigenen Modell durchführen und die einbaufertige Feder
schliesslich mittels ‘Merge’ in das Zielmodell einsetzen.

physikal. Zug- oder Druckfeder

Syntax Zugfeder CREATE SPRING (HELICAL, TENSION, STANDARD,
 D1, L0, Ln, d, ro, wd, C1, C2, F0, Fn)

Syntax Druckfeder CREATE SPRING (HELICAL, COMPRESSION, STANDARD,
 D1, L0, Ln, d, ro, wd, C1, C2, F0, Fn)

HELICAL, TENSION, COMPRESSION, STANDARD: reservierte Worte
D1: Federdurchmesser (gemessen über die Drahtmitte)
L0, Ln: die Nulllänge und die gespannte Länge gemäss dem Federdatenblatt
d: Drahtdurchmesser
ro: Materialdichte
wd: Anzahl wirksame Windungen
C1, C2: lineare und quadratische Interaktionskonstante
F0, Fn: Die Kräfte bei L0 und Ln gemäss dem Federdatenblatt

Beschreibung Die Anweisungen konstruieren komplette physikalische Schraubenfedern mit
Standard-Oesen an den Enden, welche sich dazu eignen, die Federn mittels
Bolzen zu halten. Der Aufbau der Federn geschieht mit Torussegmenten und
Zylindern. Die erzeugten Federn bekommen automatisch eine eigene
Gruppennummer. Mit dieser können allenfalls gewisse Eigenschaften der
Feder verändert werden. So bekommt die Feder ’per default’ die
Interaktionsart ‘PASSIVE’, was soviel bedeutet wie: Die Feder kann mit
anderen Objekten (z.B. mit dem Aufhängebolzen) interagieren, die
Drahtwindungen kollidieren aber nicht untereinander. Dies entspricht den
meisten Bedürfnissen. Falls man das ändern möchte, dann setzt man
anschliessend einfach die betreffende Gruppe auf ‘ACTIVE’.

Biegsames Rohr

Syntax CREATE TUBE_LINE (x1,y1,z1, x2,y2,z2,
 n0, da, di, ro, E, G, C1, C2, mode)
86

x1, y1, z1, x2, y2, z2: kartesische Koordinaten der Endpunkte des Rohrs
n0: Anzahl Elemente längs dem Rohr
da, di: Rohr-Aussen- und Innendurchmesser
ro: Materialdichte
E, G: Emodul, Gleit- bzw. Schubmodul
C1, C2: lineare und quadratische Interaktions-Konstanten
mode: CTR120, EXCL120, (NBT outdated)

BeschreibungDas Vorgehen ist völlig analog wie bei der Bildung eines Drahtes. Der einzige
Unterschied liegt darin, dass hier Zylinder mit Bohrungen (Rohrelemente)
verwendet werden statt Vollzylinder. Daraus folgen auch gewisse
Einschränkungen welchen dieses Rohrmodell anschliessend unterworfen sein
wird. Weil das biegsame Rohr aus starren Rohrelementen besteht, kann
dieses zwar verbogen werden, aber das Rohr kann nicht kollabieren. Das
Rohr wird auch bei Ueberlast seine runde Form beibehalten und sich allenfalls
zwischen den Rohrelementen plastisch verformen oder auseinanderbrechen.
Falls man ein kollabierendes Rohr modellieren möchte, dann muss dieses mit
sog. Rohrsegmenten (Tube Segments) aufgebaut werden. Rohre neigen zum
Kollabieren wenn die Wandungsstärke im Verhältnis zum Rohrdurchmesser
sehr gering ist.

Schäkel (shackle)

CREATE SHACKLE (SCREW_PIN_ANCHOR, nominal_size)

SCREW_PIN_ANCHOR: reserviertes Wort
nominal_size: eine existierende Standardgrösse als Dezimalwert (z.B. 7/8” = 0.875)
Folgende Grössen stehen zur Verfügung: {0.25, 0.3125, 0.375, 0.4375, 0.5, 0.625, 0.75, 0.875,
1.0, 1.125, 1.25, 1.375, 1.5, 1.75, 2.0, 2.5}

Alle Teile des erzeugten Schäkels tragen eine gemeinsame Gruppennummer.
Der Schäkel befindet sich vorerst im Ursprung.
87

Uebersicht ‘Macro Language’
in alphabetischer Reihenfolge

Bemerkung einige der folgenden Anweisungen (Italic) sind nur in speziellen Modulen zu
sonar_LAB verfügbar.

ATTACH OBJECT (SELECTION, TRUE || FALSE)
ATTACH OBJECTGROUP (oNr, LAST_GROUP_NR, x, y, z, x2, y2, z2, kc)
ATTACH OBJGRP_OBJGRP (oNr1, oNr2, mode)
BEGIN SCRIPT scriptname || BEGIN MACRO scriptname
CLEAR ALL
CLEAR ELEMENT (E1 || SELECTION)
CLEAR OBJECT (O1 || SELECTION)
CONCATENATE ELEMENTS (E1, RING, x0, y0, n)
CREATE BRAID (
 x1, y1, z1, x2, y2, z2,
 SL, D, nW, nE, d,
 ro, E, G, C1, C2, colorIdx, iActMethodIdx, iActModeIdx,
 matIndex)
CREATE BRAID_LITZE (
 x1, y1, z1, x2, y2, z2,
 SL, D, nL, SL0, SR0,
 d0,n0,e0,
 d1,n1,e1,
 d2,n2,e2,
 d3,n3,e3,
 d, ro, E, G, C1, C2, colorIdx, iActMethodIdx, iActModeIdx,
 matIndex)
CREATE CABLE (
 x1, y1, z1, x2, y2, z2,
 SL_L0, SR_L0, n0_L0, e0_L0, d0_L0,
 n1_L0, e1_L0, d1_L0,
 n2_L0, e2_L0, d2_L0,
 n3_L0, e3_L0, d3_L0,
 SL_L1, SR_L1, n0_L1, e0_L1, d0_L1,
 n1_L1, e1_L1, d1_L1,
 n2_L1, e2_L1, d2_L1,
 n3_L1, e3_L1, d3_L1,
 SL_L2, SR_L2, n0_L2, e0_L2, d0_L2,
 n1_L2, e1_L2, d1_L2,
 n2_L2, e2_L2, d2_L2,
 n3_L2, e3_L2, d3_L2,
 SL_S1, SR_S1, nS1, H_diam_S1,
 SL_S2, SR_S2, nS2, H_diam_S2,
 ro, E, G, C1, C2, colorIdx, iActMethodIdx, iActModeIdx,
 matIndex)
CREATE CABLE_BLOCKMODEL (
 x1,y1,z1, x2,y2,z2,
 n0, wd0,
 ro, K1, K2, K3, C1, C2)
CREATE CHAIN (
 typeNr,e1,nK,nA,o1,o2,o3,o4,nB,o5,o6,o7,o8,b1,b2,S,C1,C2)
88

CREATE CLUSTER (PARTICLE_SPHERE, DENSE || CUBIC,
 x0, y0, z0, nx, ny, nz, R1, R2)
CREATE CONTOUR_LINE_ARC(C1, E1 || SELECTION)
CREATE CONTROLSYSTEM_AUTO(o1,v1,c1,vl1,vl2, o2,v2,c2,vl3,vl4,dr)
CREATE ELEMENT (E1, ARC, x0,y0,z0, x1,y1,z1, x2,y2,z2, orient)
CREATE ELEMENT (E1, CIRCLE, cx, cy, cz, nx, ny, nz, R)
CREATE ELEMENT (E1, LINE, x1, y1, z1, x2, y2, z2)
CREATE ELEMENT (E1, POINT, x0, y0, z0)
CREATE ELEMENT (E1, POLYGON, n); DATA(x1,y1,z1, ..., xn,yn,zn)
CREATE ELEMENT (E1, POLYLINE, n); DATA(x1,y1,z1, ..., xn,yn,zn)
CREATE ELEMENT (E1, QUAD_STRIP, n); DATA(x1,y1,z1, ..., xn,yn,zn)
CREATE FIBRE (x1, y1, z1, x2, y2, z2, n0, d0, ro, E, G, C1, C2)
CREATE FIELD(Gravitation, nx, ny, nz, b)
CREATE FIXPOINT (F1, x0, y0, z0)
CREATE FIXPOINT (F1, SELECTION)
CREATE IACT_RULE(O1, O2, bool)
CREATE IACT_RULE(O1, O2, bool, mode1, mode2)
CREATE IACT_RULE(SELECTION, bool, mode1, mode2)
CREATE LINK (K1, NORMAL, O1, O2, E1)
CREATE LINK (K1, NORMAL || BENDING || TORSION, O1, O2, x0,y0,z0)
CREATE LINK (K1, NORMAL, O1, F1)
CREATE LINK (K1, NORMAL || BENDING || TORSION, SELECTION)
CREATE LINK (K1, NORMAL, AUTOMATIC, E1)
CREATE LINK (K1, NORMAL, AUTOMATIC, E1, O1)
CREATE LINK (K1, NORMAL, AUTOMATIC, CTR120, E1)
CREATE LINK (K1, NORMAL, CTR120, O1, O2)
CREATE LINK (K1, U_BREMSE, O1, O2, x1,y1,z1, x2,y2,z2)
CREATE OBJECT (O1, CONE, x0, y0, z0, wx, wy, wz, R, r, dz)
CREATE OBJECT (O1, CONE, x1, y1, z1, x2, y2, z2, r1, r2)
CREATE OBJECT (O1, CUBOID, x0, y0, z0, wx, wy, wz, dx, dy, dz)
CREATE OBJECT (O1, CUBOID, x1, y1, z1, x2, y2, z2)
CREATE OBJECT (O1, CYLINDER, x0, y0, z0, wx, wy, wz, R, dz)
CREATE OBJECT (O1, CYLINDER, x1, y1, z1, x2, y2, z2, R)
CREATE OBJECT (O1, PARTICLE_SPHERE, x0, y0, z0, R)
CREATE OBJECT (O1, PLANE, nx0, ny0, nz0, nx1, ny1, nz1)
CREATE OBJECT (O1, PRISM, E1, EXTRUSION, dz) -- convex only
CREATE OBJECT (O1, PRISM_LINE_ARC, E1 || SELECTION, EXTRUSION,dz)
CREATE OBJECT (O1, PRISM_QUAD_STRIP, E1, EXTRUSION, dz)
CREATE OBJECT (O1, SPHERE, x0, y0, z0, R)
CREATE OBJECT (O1, TORUS, R, r) -- in nullpos.
CREATE OBJECT (O1, TORUS_SEGMENT, R, r, phi) -- phi:[°]
CREATE OBJECT (O1, TUBE, x0, y0, z0, wx, wy, wz, Ra, Ri, dz)
CREATE OBJECT (O1, TUBE_SEGMENT, x1,y1,z1,x2,y2,z2,Ra,Ri,phi,ws)
CREATE OBJECT (O1, TUBE_SURFACE, x0, y0, z0, wx, wy, wz, R, dz)
CREATE POINT_CURVE (
 O1, SIMPLE, varX, varY, wx, wy, wz, mode, activation, nPoints,
 x1, y1, ... , xn, yn)
CREATE POINT_CURVE (O1, FILENAME, “filename”, varX, varY, wx, wy,
 wz, mode, activation)
CREATE PROFILE (TYPE_STRIPES, nStripes, nSections,r o, E, G,
 C1, C2, colIdx, iActMethodIdx, iActModeIdx, matIndex,
 x11, y11, z11, x12, y12, z12,
 ...
 x91, y91, z91, x92, y92, z92,
 Lz1, n1, ..., Lz9, n9,
 nLinks,
 k1x, k1y, ..., k18x, k18y)
CREATE PROFILE (TYPE_SHEET_METAL, d, L, nE, nL, ro, E)
CREATE PROFILE (TYPE_UNIFORM_PLATE, x1, x1, z1, x2, y2, z2,
89

 nx, ny, nz, ro, E, G, C1, C2, colIdx,
 iActMethodIdx, iActModeIdx, matIndex)
CREATE SPRING (HELICAL, TENSION, STANDARD, D1, L0, Ln, d, ro, wd,
 C1, C2, F0, Fn)
CREATE SPRING (LEAF, STANDARD, dL, dw, dh, n0, ro, E, G, C1, C2,
 mode)
CREATE STRAND (x1, y1, z1, x2, y2, z2,
 n0, d0, e0, n1, d1, e1, n2, d2, e2,
 SL, SR,
 ro, E, G, C1, C2)
CREATE STRAND_COMPLEX (x1, y1, z1, x2, y2, z2,
 SL, SR, n0, e0_SL, wd0,
 n1, e1_SL, wd1, D1, phi1,
 n2, e2_SL, wd2, D2, phi2,
 n3, e3_SL, wd3, D3, phi3,
 n4, e4_SL, wd4, D4, phi4,
 n5, e5_SL, wd5, D5, phi5,
 n6, e6_SL, wd6, D6, phi6,
 ro, E, G, C1, C2, colorIdx, iActMethodIdx, iActModeIdx,
 matIndex)
CREATE TUBE_LINE (x1, y1, z1, x2, y2, z2,
 n0, da, di, ro, E, G, C1, C2, mode)
CREATE WIRE_HELIX (x1, y1, z1, x2, y2, z2,
 SL, SR, e0_SL, wd0, D, phi,
 ro, E, G, C1, C2, DEFAULT || EXCL120)
CREATE WIRE_LINE(x1, y1, z1, x2, y2, z2,
 n0, wd0, ro, E, G, C1, C2, mode)
CREATE WIRE_RING (R, r, n, ro, E, G, C1, C2,
 DEFAULT || EXCL120 || CTR120)
DATA (xi, yi, zi, xj, yj, zj, ... , xn, yn, zn)
DEFORM GRID (G1, ALIGNED, Y, double, double)
DESELECT ALL
DO IF (boolean condition)
DUPLICATE OBJECT (O1 || SELECTION || ALL, INPLACE || bool)
ENHANCE RESOLUTION (x1,y1,z1, x2,y2,z2, eL, E, G) ..,eMode,aMode)
EXPORT GRID (SELECTION, FILENAME, “filename”)
FIND OBJECT (O1, x0, y0, z0)
FRAGMENT OBJECT (O1, CUBOID, dx, dy, dz, minSize)
GROUP ELEMENTS (SELECTION)
GROUP ELEMENTS (ALL)
IMPORT COLLECTION_LINE_ARC (E1, FILENAME, "filename")
IMPORT CONTOUR_LINE_ARC (E1, FILENAME, "filename")
IMPORT GRID (O1, FILENAME, "filename", typeNr)
IMPORT POLYLINE (E1, FILENAME, "filename")
JOIN OBJECTGROUP (O1, Emodul)
JOIN OBJECTSUPERGROUP (O1, Emodul)
LOOP FOR (K, i1, i2, step)
MOVE ELEMENT (E1 || SELECTION, MOVE_MATRIX, O1 || SELECTION)
MOVE OBJECT (O1 || SELECTION, ABSOLUTE || RELATIVE, x0, y0, z0,
 wx, wy, wz)
RESET ANGLE (ALL)
RESET F_EXT (ALL)
REVOLVE ELEMENT (G1, SELECTION, GRID_ROT_CONTOUR, w1, w2, nNodes)
REVOLVE SECTION (O1, SELECTION)
ROTATE GRID (G1, cx, cy, cz, wx, wy, wz)
ROTATE OBJECT (O1, cx, cy, cz, wx, wy, wz)
ROTATE OBJECTGROUP(O1, cx, cy, cz, wx, wy, wz)
ROTATE OBJECTSUPERGROUP(O1, cx, cy, cz, wx, wy, wz)
SELECT CONTOUR (C1)
90

SELECT ELEMENT (E1)
SELECT FIXPOINT (F1)
SELECT LINK (K1)
SELECT LINK (x0, y0, z0)
SELECT OBJECT (ALL)
SELECT OBJECT (LAST_OBJECT - n)
SELECT OBJECT (O1) || SELECT MICROBE(O1)
SELECT OBJECT (POINT, x1, y1, z1)
SELECT OBJECT (POINT, ALL, x1, y1, z1)
SELECT OBJECT (RECT, XY, x1, x2, y1, y2)
SELECT OBJECT (SPACE, x1, y1, z1, x2, y2, z2)
SELECT OBJECT (COLOR_STD, index)
SELECT OBJECT (COLOR_RGB, red, green, blue)
SET GROUP_PROPERTY(O1, VELOCITY, {X|Y|Z}, vAbs)
SET GROUP_PROPERTY(O1, SUPERGROUP_NR, LAST_SUPERGROUP_NR)
SET GROUP_PROPERTY(O1, C_DAMPING, BENDING, double)
SET GROUP_PROPERTY(O1, C_DAMPING, NORMAL, double)
SET GROUP_PROPERTY(O1, C_DAMPING, TORSION, double)
SET GROUP_PROPERTY(O1, C_LINK, BENDING, double)
SET GROUP_PROPERTY(O1, C_LINK, NORMAL, double)
SET GROUP_PROPERTY(O1, C_LINK, TORSION, double)
SET GROUP_PROPERTY(O1, DENSITY, double)
SET GROUP_PROPERTY(O1, GLUE, c, RMax, TRUE)
SET GROUP_PROPERTY(O1, VISCOSITY, C, N, T, cA, cD, dMax, TRUE)
SET GROUP_PROPERTY(O1, ROTATION_LOCKED, X|Y|Z, TRUE || FALSE,
 ALL || FIRST_LAST)
SET GROUP_PROPERTY(O1, COLOR_STD, 4)
SET GROUP_PROPERTY(O1, COLOR_RGB, 255, 0, 0)
SET GROUP_PROPERTY(O1, C_LINK, STRAIN_LIMIT,
 PERCENT || ABSOLUTE, double
SET GROUP_PROPERTY(O1, C_LINK, STRENGTH_CALC, mode, value, fac)
SET GROUP_PROPERTY(O1, C_LINK, STRENGTH_ULTIMATE, mode,value,fac)
SET GROUP_PROPERTY(O1, C_LINK, UNLIMITED, bool)
SET GROUP_PROPERTY(O1, C_LINK, OVERLOAD_ACTION, action)
SET GROUP_PROPERTY(O1, C_LINK, MATERIAL_MODEL, modelNr)
SET GROUP_PROPERTY(O1, C_LINK, CTR120, K_ctr, K_r)
SET GROUP_PROPERTY(O1, C_INTERACT_LIN, double)
SET GROUP_PROPERTY(O1, C_INTERACT_QUAD, double)
SET GROUP_PROPERTY(O1, FORCE_EXT, {X|Y|Z}, double)
SET GROUP_PROPERTY(O1, INTERACT_MODE, {ACTIVE,PASSIVE,..})
SET GROUP_PROPERTY(O1, SIM_MEMBER, FALSE)
SET GROUP_PROPERTY(O1, YIELD_MODEL, modelNr)
SET POINT (G1, ix, iy, X || Y || Z, double)
SET POINT (G1, ix, iy, x, y, z)
SET PREFERENCE (IACT_CYCLE_CALC_PERIOD, int)
SET PREFERENCE (IACT_DEPTH_LIMIT_ACTIVE, TRUE)
SET PREFERENCE (IACT_DEPTH_LIMIT_MSG, TRUE)
SET PREFERENCE (IACT_DEPTH_LIMIT_VALUE, double)
SET PREFERENCE (IACT_OBJSIZE_SECURITY_FAC, double)
SET PROPERTY(E1, NORMALVECTOR, x1, y1, z1)
SET PROPERTY(E1, NORMALDIRECTION, 1)
SET PROPERTY(E1, INUSE, bool)
SET PROPERTY(K1, ANGLE, {X|Y|Z}, double)
SET PROPERTY(K1, C_DAMPING, double)
SET PROPERTY(K1, C_LINK, double)
SET PROPERTY(K1, MOMENT_FRICTION, double)
SET PROPERTY(O1, ANGULAR_VELOCITY, {X|Y|Z}, double)
SET PROPERTY(O1, BEVEL, ROUND || FACET, double)
SET PROPERTY(O1, C_INTERACT_LIN, 0.0001)
91

SET PROPERTY(O1, C_INTERACT_QUAD, 0.0001)
SET PROPERTY(O1, COLOR_STD, 4)
SET PROPERTY(O1, COLOR_RGB, 255, 0, 0)
SET PROPERTY(O1, INTERACT_CONTROLPOINT, x1, y1, z1, TRUE)
SET PROPERTY(O1, DENSITY, 7.8)
SET PROPERTY(O1, END_OF_WIRE, TRUE);
SET PROPERTY(O1, FORCE_EXT, {X|Y|Z}, double)
SET PROPERTY(O1, FRICTION_UNILATERAL, double)
SET PROPERTY(O1, GLUE, TRUE)
SET PROPERTY(O1, GROUP_NR, LAST_GROUP_NR)
SET PROPERTY(O1, INTERACT_DIRECTION, RADIAL_ONLY || AXIAL_ONLY ||
 ALL_DIRECTIONS)
SET PROPERTY(O1, INTERACT_METHOD, ELASTIC, 10)
SET PROPERTY(O1, INTERACT_MODE, {ACTIVE,PASSIVE,NO_INTERACTION})
SET PROPERTY(O1, LONG_CONTOUR_OBJECT, TRUE)
SET PROPERTY(O1, MASS, double)
SET PROPERTY(O1, MOMENT_FORCE_EXT, nx, ny, nz, F)
SET PROPERTY(O1, MOMENT_INERTIA, Ix, Iy, Iz)
SET PROPERTY(O1, MOMENT_INERTIA, FACTOR, double)
SET PROPERTY(O1, NAME, “objectname”)
SET PROPERTY(O1, ROTATION_LOCKED, X|Y|Z, TRUE|FALSE)
SET PROPERTY(O1, SIM_MEMBER, FALSE)
SET PROPERTY(O1, SUPERGROUP_NR, LAST_SUPERGROUP_NR)
SET PROPERTY(O1, TRANSPARENCY, integer)
SET PROPERTY(O1, VELOCITY, {X|Y|Z}, double)
SET PROPERTY(O1, VISCOSITY, TRUE)
SET PROPERTY(O1, VISIBILITY, FALSE)
SET PROPERTY(O1, WIREFRAME, TRUE)
SET STATE (BENDING_STRENGTH, ON || OFF, SUPERGROUP_NR,
 LAST_SUPERGROUP_NR)
SET STATE (FRICTION, ON || OFF)
SET STATE (GLUE, ON || OFF)
SET STATE (VISCOSITY, ON || OFF)
SET VALUE (CABLE_CORRECTIONS, HELIX, sNr, wNr, double)
SET VALUE (CABLE_CORRECTIONS, ANGLE, sNr, TRUE|FALSE)
SET VALUE (C_FRICTION_DYNAMIC = double)
SET VALUE (C_FRICTION_STATIC = double)
SET VALUE (C_GLUE = double)
SET VALUE (C_LINK = double, linktype, OBJECTNAME, “objectname”)
SET VALUE (E_MODUL= double, SUPERGROUP_NR, LAST_SUPERGROUP_NR, f)
SET VALUE (BENDING_STRENGTH = double, SUPERGROUP_NR,
 LAST_SUPERGROUP_NR, f)
SET VALUE (C_VISCOSITY = double)
SET VALUE (MATERIAL_PARAM, Index, A, B, C, D, E, F, n1, n2, n3)
SET VALUE (MODEL_SCALE, SCREEN_WORLD = value, REAL_WORLD = value
SET VALUE (MODEL_SIZE_FAC_OPENGL = double)
SET VALUE (NEW_GROUP_NR)
SET VALUE (NEW_SUPERGROUP_NR)
SET VALUE (O1 = SELECTION)
SET VALUE (TIMESTEP_MAX = double)
SET VALUE (VISCOSITY_RANGE = double)
SWEEP CROSSSECTION (O1, SELECTION, POLYLINE, CIRCLE, R)
SWEEP CROSSSECTION (O1, SELECTION, LINE_ARC, CIRCLE, R)
TRANSFORM ELEMENTS (E1, CONTOUR)
TRANSFORM ELEMENTS (E1, LINE_SEGMENTS, dL)
TRANSLATE GRID (G1 || SELECTION, ABSOLUTE || RELATIVE, dx,dy,dz)
TRANSLATE OBJECT(O1 || SELECTION, ABSOLUTE || RELATIVE, dx,dy,dz)
TRANSLATE OBJECTGROUP(O1, ABSOLUTE || RELATIVE, dx, dy, dz)
TRANSLATE OBJECTSUPERGROUP(O1, ABSOLUTE || RELATIVE, dx, dy, dz)
92

TWIST OBJECT (O1 || SELECTION, Tx, Ty, Tz, dz)
UNGROUP ELEMENTS (ALL)
93

Uebersicht Macro Language
nach Funktionsgruppen

Rohdaten

Rohdaten Import IMPORT COLLECTION_LINE_ARC (E1, FILENAME, "filename")
IMPORT CONTOUR_LINE_ARC (E1, FILENAME, "filename")
IMPORT GRID (O1, FILENAME, "filename", typeNr)
IMPORT POLYLINE (E1, FILENAME, "filename")

Rohdaten Erzeugen CREATE ELEMENT (E1, ARC, x0,y0,z0, x1,y1,z1, x2,y2,z2, orient)
CREATE ELEMENT (E1, CIRCLE, cx, cy, cz, nx, ny, nz, R)
CREATE ELEMENT (E1, LINE, x1, y1, z1, x2, y2, z2)
CREATE ELEMENT (E1, POINT, x0, y0, z0)
CREATE ELEMENT (E1, POLYGON, n); DATA(x1,y1,z1, ..., xn,yn,zn)
CREATE ELEMENT (E1, POLYLINE, n); DATA(x1,y1,z1, ..., xn,yn,zn)
CREATE ELEMENT (E1, QUAD_STRIP, n); DATA(x1,y1,z1, ..., xn,yn,zn)
DATA (xi, yi, zi, xj, yj, zj, ... , xn, yn, zn)
CREATE CONTOUR_LINE_ARC(C1, E1 || SELECTION)

Grid Functions DEFORM GRID (G1, ALIGNED, Y, double, double)
EXPORT GRID (SELECTION, FILENAME, “filename”)
REVOLVE ELEMENT (G1, SELECTION, GRID_ROT_CONTOUR, w1, w2, nNodes)
ROTATE GRID (G1, cx, cy, cz, wx, wy, wz)
SET POINT (G1, ix, iy, X || Y || Z, double)
SET POINT (G1, ix, iy, x, y, z)

Rohdaten Eigenschaften SET PROPERTY(E1, NORMALVECTOR, x1, y1, z1)
SET PROPERTY(E1, NORMALDIRECTION, 1)
SET PROPERTY(E1, INUSE, bool)

Rohdaten Verwalten CLEAR ELEMENT (E1 || SELECTION)
CONCATENATE ELEMENTS (E1, RING, x0, y0, n)
GROUP ELEMENTS (SELECTION)
GROUP ELEMENTS (ALL)
SELECT CONTOUR (C1)
SELECT ELEMENT (E1)
TRANSFORM ELEMENTS (E1, CONTOUR)
TRANSFORM ELEMENTS (E1, LINE_SEGMENTS, dL)
UNGROUP ELEMENTS (ALL)

Rohdaten Bewegen MOVE ELEMENT (E1 || SELECTION, MOVE_MATRIX, O1 || SELECTION)
TRANSLATE GRID (G1 || SELECTION, ABSOLUTE || RELATIVE, dx,dy,dz)

Primitives

Primitives Erzeugen CREATE OBJECT (O1, CONE, x0, y0, z0, wx, wy, wz, R, r, dz)
CREATE OBJECT (O1, CONE, x1, y1, z1, x2, y2, z2, r1, r2)
94

CREATE OBJECT (O1, CUBOID, x0, y0, z0, wx, wy, wz, dx, dy, dz)
CREATE OBJECT (O1, CUBOID, x1, y1, z1, x2, y2, z2)
CREATE OBJECT (O1, CYLINDER, x0, y0, z0, wx, wy, wz, R, dz)
CREATE OBJECT (O1, CYLINDER, x1, y1, z1, x2, y2, z2, R)
CREATE OBJECT (O1, PARTICLE_SPHERE, x0, y0, z0, R)
CREATE OBJECT (O1, PLANE, nx0, ny0, nz0, nx1, ny1, nz1)
CREATE OBJECT (O1, PRISM, E1, EXTRUSION, dz)
CREATE OBJECT (O1, PRISM_LINE_ARC, E1 || SELECTION, EXTRUSION,dz)
CREATE OBJECT (O1, PRISM_QUAD_STRIP, E1, EXTRUSION, dz)
CREATE OBJECT (O1, SPHERE, x0, y0, z0, R)
CREATE OBJECT (O1, TORUS, R, r)
CREATE OBJECT (O1, TORUS_SEGMENT, R, r, phi)
CREATE OBJECT (O1, TUBE, x0, y0, z0, wx, wy, wz, Ra, Ri, dz)
CREATE OBJECT (O1, TUBE_SEGMENT, x1,y1,z1,x2,y2,z2,Ra,Ri,phi,ws)
CREATE OBJECT (O1, TUBE_SURFACE, x0, y0, z0, wx, wy, wz, R, dz)

Fixpunkte ErzeugenCREATE FIXPOINT (F1, x0, y0, z0)
CREATE FIXPOINT (F1, SELECTION)

Spezielle ObjekteREVOLVE SECTION (O1, SELECTION)
TWIST OBJECT (O1 || SELECTION, Tx, Ty, Tz, dz)

Primitives BefestigenATTACH OBJECT (SELECTION, TRUE || FALSE)
ATTACH OBJECTGROUP (oNr, LAST_GROUP_NR, x, y, z, x2, y2, z2, kc)
ATTACH OBJGRP_OBJGRP (oNr1, oNr2, mode)

Primitives VerwaltenCLEAR OBJECT (O1 || SELECTION)
DUPLICATE OBJECT (O1 || SELECTION || ALL, INPLACE || bool)
RESET ANGLE (ALL)
RESET F_EXT (ALL)

Primitives SelektierenSELECT OBJECT (ALL)
SELECT OBJECT (LAST_OBJECT - n)
SELECT OBJECT (O1) || SELECT MICROBE(O1)
SELECT OBJECT (POINT, x1, y1, z1)
SELECT OBJECT (POINT, ALL, x1, y1, z1)
SELECT OBJECT (RECT, XY, x1, x2, y1, y2)
SELECT OBJECT (SPACE, x1, y1, z1, x2, y2, z2)
SELECT OBJECT (COLOR_STD, index)
SELECT OBJECT (COLOR_RGB, red, green, blue)
SELECT FIXPOINT (F1)

Primitive-Eigenschaften
Setzen

CREATE IACT_RULE(O1, O2, bool)
CREATE IACT_RULE(O1, O2, bool, mode1, mode2)
CREATE IACT_RULE(SELECTION, bool, mode1, mode2)
SET PROPERTY(O1, ANGULAR_VELOCITY, {X|Y|Z}, double)
SET PROPERTY(O1, BEVEL, ROUND || FACET, double)
SET PROPERTY(O1, C_INTERACT_LIN, 0.0001)
SET PROPERTY(O1, C_INTERACT_QUAD, 0.0001)
SET PROPERTY(O1, COLOR_STD, 4)
SET PROPERTY(O1, COLOR_RGB, 255, 0, 0)
SET PROPERTY(O1, INTERACT_CONTROLPOINT, x1, y1, z1, TRUE)
SET PROPERTY(O1, DENSITY, 7.8)
SET PROPERTY(O1, END_OF_WIRE, TRUE);
SET PROPERTY(O1, FORCE_EXT, {X|Y|Z}, double)
SET PROPERTY(O1, FRICTION_UNILATERAL, double)
SET PROPERTY(O1, GLUE, TRUE)
95

SET PROPERTY(O1, GROUP_NR, LAST_GROUP_NR)
SET PROPERTY(O1, INTERACT_DIRECTION, RADIAL_ONLY || AXIAL_ONLY ||
 ALL_DIRECTIONS)
SET PROPERTY(O1, INTERACT_METHOD, ELASTIC, 10)
SET PROPERTY(O1, INTERACT_MODE, {ACTIVE,PASSIVE,NO_INTERACTION})
SET PROPERTY(O1, LONG_CONTOUR_OBJECT, TRUE)
SET PROPERTY(O1, MASS, double)
SET PROPERTY(O1, MOMENT_FORCE_EXT, nx, ny, nz, F)
SET PROPERTY(O1, MOMENT_INERTIA, Ix, Iy, Iz)
SET PROPERTY(O1, MOMENT_INERTIA, FACTOR, double)
SET PROPERTY(O1, NAME, “objectname”)
SET PROPERTY(O1, ROTATION_LOCKED, X|Y|Z, TRUE|FALSE)
SET PROPERTY(O1, SIM_MEMBER, FALSE)
SET PROPERTY(O1, SUPERGROUP_NR, LAST_SUPERGROUP_NR)
SET PROPERTY(O1, TRANSPARENCY, integer)
SET PROPERTY(O1, VELOCITY, {X|Y|Z}, double)
SET PROPERTY(O1, VISCOSITY, TRUE)
SET PROPERTY(O1, VISIBILITY, FALSE)
SET PROPERTY(O1, WIREFRAME, TRUE)

Primitives Bewegen MOVE OBJECT (O1 || SELECTION, ABSOLUTE || RELATIVE, x0, y0, z0,
 wx, wy, wz)
ROTATE OBJECT (O1, cx, cy, cz, wx, wy, wz)
TRANSLATE OBJECT(O1 || SELECTION, ABSOLUTE || RELATIVE, dx,dy,dz)

Primitive-Gruppen und Clusters

Seile CREATE CABLE_BLOCKMODEL (
 x1,y1,z1, x2,y2,z2,
 n0, wd0,
 ro, K1, K2, K3, C1, C2)

Biegsames Rohr CREATE TUBE_LINE (x1, y1, z1, x2, y2, z2,
 n0, da, di, ro, E, G, C1, C2, mode)

Biegsame Drähte CREATE WIRE_LINE(x1, y1, z1, x2, y2, z2,
 n0, wd0, ro, E, G, C1, C2, mode)
CREATE WIRE_RING (R, r, n, ro, E, G, C1, C2,
 DEFAULT || EXCL120 || CTR120)

Federn CREATE SPRING (HELICAL, TENSION || COMPRESSION, STANDARD,
 D1, L0, Ln, d, ro, wd, C1, C2, F0, Fn)
CREATE SPRING (LEAF, STANDARD, dL, dw, dh, n0, ro, E, G, C1, C2,
 mode)

Objektgruppe Bewegen ROTATE OBJECTGROUP(O1, cx, cy, cz, wx, wy, wz)
ROTATE OBJECTSUPERGROUP(O1, cx, cy, cz, wx, wy, wz)
TRANSLATE OBJECTGROUP(O1, ABSOLUTE || RELATIVE, dx, dy, dz)
TRANSLATE OBJECTSUPERGROUP(O1, ABSOLUTE || RELATIVE, dx, dy, dz)

Allgemeine Funktionen JOIN OBJECTGROUP (O1, Emodul)
JOIN OBJECTSUPERGROUP (O1, Emodul)

Objektgruppen-
Eigenschaften Setzen

SET GROUP_PROPERTY(O1, VELOCITY, {X|Y|Z}, vAbs)
SET GROUP_PROPERTY(O1, SUPERGROUP_NR, LAST_SUPERGROUP_NR)
SET GROUP_PROPERTY(O1, C_DAMPING, BENDING, double)
96

SET GROUP_PROPERTY(O1, C_DAMPING, NORMAL, double)
SET GROUP_PROPERTY(O1, C_DAMPING, TORSION, double)
SET GROUP_PROPERTY(O1, C_LINK, BENDING, double)
SET GROUP_PROPERTY(O1, C_LINK, NORMAL, double)
SET GROUP_PROPERTY(O1, C_LINK, TORSION, double)
SET GROUP_PROPERTY(O1, DENSITY, double)
SET GROUP_PROPERTY(O1, GLUE, c, RMax, TRUE)
SET GROUP_PROPERTY(O1, VISCOSITY, C, N, T, cA, cD, dMax, TRUE)
SET GROUP_PROPERTY(O1, ROTATION_LOCKED, X|Y|Z, TRUE || FALSE,
 ALL || FIRST_LAST)
SET GROUP_PROPERTY(O1, COLOR_STD, 4)
SET GROUP_PROPERTY(O1, COLOR_RGB, 255, 0, 0)
SET GROUP_PROPERTY(O1, C_LINK, STRAIN_LIMIT,
 PERCENT || ABSOLUTE, double
SET GROUP_PROPERTY(O1, C_LINK, STRENGTH_CALC, mode, value, fac)
SET GROUP_PROPERTY(O1, C_LINK, STRENGTH_ULTIMATE, mode,value,fac)
SET GROUP_PROPERTY(O1, C_LINK, UNLIMITED, bool)
SET GROUP_PROPERTY(O1, C_LINK, OVERLOAD_ACTION, action)
SET GROUP_PROPERTY(O1, C_LINK, MATERIAL_MODEL, modelNr)
SET GROUP_PROPERTY(O1, C_LINK, CTR120, K_ctr, K_r)
SET GROUP_PROPERTY(O1, C_INTERACT_LIN, double)
SET GROUP_PROPERTY(O1, C_INTERACT_QUAD, double)
SET GROUP_PROPERTY(O1, FORCE_EXT, {X|Y|Z}, double)
SET GROUP_PROPERTY(O1, INTERACT_MODE, {ACTIVE,PASSIVE,..})
SET GROUP_PROPERTY(O1, SIM_MEMBER, FALSE)
SET GROUP_PROPERTY(O1, YIELD_MODEL, modelNr)
SET STATE (BENDING_STRENGTH, ON || OFF, SUPERGROUP_NR,
 LAST_SUPERGROUP_NR)
SET VALUE (E_MODUL= double, SUPERGROUP_NR, LAST_SUPERGROUP_NR, f)
SET VALUE (BENDING_STRENGTH = double, SUPERGROUP_NR,
 LAST_SUPERGROUP_NR, f)

Group- and Supergroup Operationen

eine neue Gruppen-Nr
erzeugen

SET VALUE (NEW_GROUP_NR)
SET VALUE (NEW_SUPERGROUP_NR)

einzelne Objekte zu einer
Gruppe hinzufügen

SET PROPERTY (O1, GROUP_NR, LAST_GROUP_NR) (*)
SET PROPERTY (O1, SUPERGROUP_NR, LAST_SUPERGROUP_NR)

eine Gruppe von Objekten
zu einer Supergroup
hinzufügen

SET GROUP_PROPERTY (O1, SUPERGROUP_NR, LAST_SUPERGROUP_NR) (**)
SET GROUP_PROPERTY (LAST_GROUP_NR, SUPERGROUP_NR,
 LAST_SUPERGROUP_NR)
(*) O1 ist hier ein bestimmtes einzelnes Objekt
(**) O1 ist hier ein Repräsentant einer Objektgruppe

Links

Links ErzeugenCREATE LINK (K1, NORMAL, O1, O2, E1)
CREATE LINK (K1, NORMAL || BENDING || TORSION, O1, O2, x0,y0,z0)
CREATE LINK (K1, NORMAL, O1, F1)
CREATE LINK (K1, NORMAL || BENDING || TORSION, SELECTION)
CREATE LINK (K1, NORMAL, AUTOMATIC, E1)
CREATE LINK (K1, NORMAL, AUTOMATIC, E1, O1)
CREATE LINK (K1, NORMAL, AUTOMATIC, CTR120, E1)
97

CREATE LINK (K1, NORMAL, CTR120, O1, O2)
CREATE LINK (K1, U_BREMSE, O1, O2, x1,y1,z1, x2,y2,z2)

SELECT LINK (K1)
SELECT LINK (x0, y0, z0)

SET PROPERTY(K1, ANGLE, {X|Y|Z}, double)
SET PROPERTY(K1, C_DAMPING, double)
SET PROPERTY(K1, C_LINK, double)
SET PROPERTY(K1, MOMENT_FRICTION, double)

SET VALUE (C_LINK = double, linktype, OBJECTNAME, “objectname”)

Control Systems

Punkt Kurven CREATE POINT_CURVE (
 O1, SIMPLE, varX, varY, wx, wy, wz, mode, activation, nPoints,
 x1, y1, ... , xn, yn)
CREATE POINT_CURVE (
 O1, FILENAME, “filename”, varX, varY, wx, wy, wz, mode,
activation)

Kontrollsysteme CREATE CONTROLSYSTEM_AUTO(o1,v1,c1,vl1,vl2, o2,v2,c2,vl3,vl4,dr)

Allg. Verwaltungsfunktionen

BEGIN SCRIPT scriptname || BEGIN MACRO scriptname
CLEAR ALL
DESELECT ALL

Globale Eigenschaften

CREATE FIELD(Gravitation, nx, ny, nz, b)
SET STATE (FRICTION, ON || OFF)
SET STATE (GLUE, ON || OFF)
SET STATE (VISCOSITY, ON || OFF)
SET VALUE (C_FRICTION_DYNAMIC = double)
SET VALUE (C_FRICTION_STATIC = double)
SET VALUE (C_GLUE = double)
SET VALUE (C_VISCOSITY = double)
SET VALUE (MATERIAL_PARAM, Index, A, B, C, D, E, F, n1, n2, n3)
SET VALUE (MODEL_SCALE, SCREEN_WORLD = value, REAL_WORLD = value
SET VALUE (MODEL_SIZE_FAC_OPENGL = double)
SET VALUE (NEW_GROUP_NR)
SET VALUE (NEW_SUPERGROUP_NR)
SET VALUE (TIMESTEP_MAX = double)
SET VALUE (VISCOSITY_RANGE = double)

Simulations-Steuerung

SET PREFERENCE (IACT_CYCLE_CALC_PERIOD, int)
SET PREFERENCE (IACT_DEPTH_LIMIT_ACTIVE, TRUE)
SET PREFERENCE (IACT_DEPTH_LIMIT_MSG, TRUE)
SET PREFERENCE (IACT_DEPTH_LIMIT_VALUE, double)
SET PREFERENCE (IACT_OBJSIZE_SECURITY_FAC, double)
98

Programm Steuerung

Bedingte AusführungDO IF (boolean condition)
 statementList
END IF

SchleifenLOOP FOR (K, i1, i2, step)
 statementList
END FOR

Objekt Referenz festlegenFIND OBJECT (O1, x0, y0, z0)
SET VALUE (O1 = SELECTION)

Modul Cable

ZopfCREATE BRAID (
 x1, y1, z1, x2, y2, z2,
 SL, D, nW, nE, d,
 ro, E, G, C1, C2, colorIdx, iActMethodIdx, iActModeIdx,
 matIndex)

LitzenzopfCREATE BRAID_LITZE (
 x1, y1, z1, x2, y2, z2,
 SL, D, nL, SL0, SR0,
 d0,n0,e0,
 d1,n1,e1,
 d2,n2,e2,
 d3,n3,e3,
 d, ro, E, G, C1, C2, colorIdx, iActMethodIdx, iActModeIdx,
 matIndex)

SeilCREATE CABLE (
 x1, y1, z1, x2, y2, z2,
 SL_L0, SR_L0, n0_L0, e0_L0, d0_L0,
 n1_L0, e1_L0, d1_L0,
 n2_L0, e2_L0, d2_L0,
 n3_L0, e3_L0, d3_L0,
 SL_L1, SR_L1, n0_L1, e0_L1, d0_L1,
 n1_L1, e1_L1, d1_L1,
 n2_L1, e2_L1, d2_L1,
 n3_L1, e3_L1, d3_L1,
 SL_L2, SR_L2, n0_L2, e0_L2, d0_L2,
 n1_L2, e1_L2, d1_L2,
 n2_L2, e2_L2, d2_L2,
 n3_L2, e3_L2, d3_L2,
 SL_S1, SR_S1, nS1, H_diam_S1,
 SL_S2, SR_S2, nS2, H_diam_S2,
 ro, E, G, C1, C2, colorIdx, iActMethodIdx, iActModeIdx,
 matIndex)

LitzeCREATE STRAND (x1, y1, z1, x2, y2, z2,
 n0, d0, e0, n1, d1, e1, n2, d2, e2,
 SL, SR,
 ro, E, G, C1, C2)
99

Komplexe Litze CREATE STRAND_COMPLEX (x1, y1, z1, x2, y2, z2,
 SL, SR, n0, e0_SL, wd0,
 n1, e1_SL, wd1, D1, phi1,
 n2, e2_SL, wd2, D2, phi2,
 n3, e3_SL, wd3, D3, phi3,
 n4, e4_SL, wd4, D4, phi4,
 n5, e5_SL, wd5, D5, phi5,
 n6, e6_SL, wd6, D6, phi6,
 ro, E, G, C1, C2, colorIdx, iActMethodIdx, iActModeIdx,
 matIndex)

Drahthelix CREATE WIRE_HELIX (x1, y1, z1, x2, y2, z2,
 SL, SR, e0_SL, wd0, D, phi,
 ro, E, G, C1, C2, DEFAULT || EXCL120)

Funtionen SET VALUE (CABLE_CORRECTIONS, HELIX, sNr, wNr, double)
SET VALUE (CABLE_CORRECTIONS, ANGLE, sNr, TRUE|FALSE)

Modul Chain

CREATE CHAIN (
 typeNr,e1,nK,nA,o1,o2,o3,o4,nB,o5,o6,o7,o8,b1,b2,S,C1,C2)

Modul Profile

Profile Erzeugen CREATE PROFILE (TYPE_STRIPES, nStripes, nSections,r o, E, G,
 C1, C2, colIdx, iActMethodIdx, iActModeIdx, matIndex,
 x11, y11, z11, x12, y12, z12,
 ...
 x91, y91, z91, x92, y92, z92,
 Lz1, n1, ..., Lz9, n9,
 nLinks,
 k1x, k1y, ..., k18x, k18y)
CREATE PROFILE (TYPE_SHEET_METAL, d, L, nE, nL, ro, E)
CREATE PROFILE (TYPE_UNIFORM_PLATE, x1, x1, z1, x2, y2, z2,
 nx, ny, nz, ro, E, G, C1, C2, colIdx,
 iActMethodIdx, iActModeIdx, matIndex)
SWEEP CROSSSECTION (O1, SELECTION, POLYLINE, CIRCLE, R)
SWEEP CROSSSECTION (O1, SELECTION, LINE_ARC, CIRCLE, R)

Funktionen ENHANCE RESOLUTION (x1,y1,z1, x2,y2,z2, eL, E, G) ..,eMode,aMode)
FRAGMENT OBJECT (O1, CUBOID, dx, dy, dz, minSize)

Modul Particles

CREATE CLUSTER (PARTICLE_SPHERE, DENSE || CUBIC, x0, y0, z0, nx,
ny, nz, R1, R2)
CREATE FIBRE (x1, y1, z1, x2, y2, z2, n0, d0, ro, E, G, C1, C2)

Konstanten

einige sonar script Anweisungen benutzen die Parameter ‘iActMethodIdx’ und
‘iActModeIdx’. Diese Parameter (integer) haben in Bezug auf die
Bezeichnungen wie sie in den Dialogen benutzt werden die folgende
Bedeutung:
100

iActMethodIdx
(interaction method)

0: CUSTOM
1: EP_100_0
2: EP_90_10
3: EP_75_25 (Elastic 75%, Plastic 25%)
4: EP_50_50
5: EP_25_75
6: EP_10_90
7: EP_0_100

iActModeIdx
(interaction mode)

0: NO_INTERACTION
1: ACTIVE
2: PASSIVE

Bool’sche Wertepositive Werte: 1, TRUE, YES, ON 
negative Werte: 0, FALSE, NO, OFF

kartesische KoordinatenX, Y, Z

Spezifizierung von Link-
Kombinationen

CTR120, EXCL120, NNN, NNNN, NBT, NNB
101

Kontrollsystem Sprache

Ueberblick

Nebst der Anwendung als Makrosprache wird ‘sonar script’ auch als
Kontrollsystemsprache zur kontinuierlichen Steuerung von Objekten während
einer laufenden Simulation eingesetzt. Wäre Objekt (o1) beispielsweise ein
im Schwerpunkt drehbar gelagertes Objekt, dann würde das folgende
Kontrollsystem dafür sorgen, dass die Drehzahl von Objekt ‘o1’ zunehmend
ansteigt bis eine gewisse Drehzahl erreicht wird. Anschliessend würde das
Objekt kontrolliert auf der gegebenen Solldrehzahl gehalten.

Beispiel CONTROLSYSTEM speed_control
DO IF (OMG(o1) < 1.0E-5) (A)
 SET VALUE (MOMENT_FORCE_EXT.z(o1) = 1.0E-8) (B)
END IF
DO IF (OMG(o1) > 1.0E-5)
 SET VALUE (MOMENT_FORCE_EXT.z(o1) = -1.0E-8)
END IF
-- end of control system

Bereits aus diesem einfachen Beispiel geht hervor, dass es grundsätzlich zwei
Arten von Anweisungen gibt.

1. Es gibt sog. bedingte Anweisungen welche als Resultat einen bool’schen
Wert (true/false) liefern und dafür sorgen, dass nachfolgende
Anweisungen nur unter gewissen Bedingungen ausgeführt werden (A).

2. Und es gibt sog. Zuweisungen welche einer bestimmten Objektvariablen
einen berechneten oder gegebenen Wert zuweisen (B).

In den verwendeten Ausdrücken dürfen alle geometrischen und
physikalischen Variablen vorhandener Objekte entweder verwendet oder neu
berechnet und gesetzt werden.

Grammatik

Die Vielfalt an möglichen Anweisungen in einem Kontrollsystem lässt es nicht
zu, die Summe aller möglichen Anweisungen in der geschlossenen Form
anzugeben, wie das bei Makros der Fall ist. Mit den vorhandenen
geometrischen und physikalischen Variablen sämtlicher Objekte lassen sich
letztlich endlos viele Varianten von Formeln bilden. Wir geben deshalb im
folgenden die Grammatik der Kontrollsystem-Sprache in einer möglichen
Beschreibungsforman an. Es handelt sich um die Darstellung der sog. Backus
Naur Form der Syntax.
102

Backus Naur Form (BNF)<Controlsystem> ::= <Statement> <CR> <Controlsystem> | <NUL>
<CR> ::= carriage return character (ASCII 13)
<NUL> ::= end of Controlsystem
<Statement> ::= <Command> <Qualifier>
<Statement> ::= <Command> <Qualifier> (<Assignment>)
<Statement> ::= <Command> <Qualifier> (<BoolExpression>)
<Command> ::= <Identifier>
<Assignment> ::= <Variable> = <Expression>
<Expression> ::= <Term> | (<Term> +|- <Term>)
<Term> ::= <Factor> | (<Factor> *|/ <Factor>)
<Factor> ::= <Number> | <Variable> | (<Expression>)
<Factor> ::= <Function> (<Expression>)
<BoolExpression>::= <Expression> <Skal.Operand> <Expression>
<BoolExpression ::= <BoolExpression> <Bool.Op.> <BoolExpression>
<Variable> ::= <Skal.Variable> | <Vect.Variable>
<Skal.Variable> ::= <Identifier> (<Obj.Variable>)
<Vect.Variable> ::= <Identifier> . <Coord> (<Obj.Variable>)
<Obj.Variable> ::= O|K|A|P <Pos.Integer>
<LoopVar> ::= character
<Const> ::= <Integer> | <Decimal>
<Coord> ::= X | Y | Z
<Function> ::= SIN | COS | TAN | ASIN | ACOS | ATAN | SINH |
 COSH | TANH | ABS | SQR | SQRT | EXP | LOG |
 LOG10 | ODD
<Operation> ::= + | - | *| /
<Skal.Operand> ::= < | <= | == | >= | >
<Bool.Operand> ::= AND | OR | NOT
<Identifier> ::= list of words
<Qualifier> ::= list of words
<Number> ::= <Decimal> | <Integer>
<Decimal> ::= 123.45678.. | 1.2345678E+02
<Integer> ::= positiv or negativ integral number
<Pos.Integer> ::= positiv integral number (1,2,3,..)
103

Reservierte Worte

Command ALARM, ATTACH, BEGIN, CALC, CALCULATE, CHANGE, CLEAR, CLOSE, CONCATENATE,
CONTROLSYSTEM, COPY, CREATE, CUT, DEFORM, DESELECT, DISTORT, DO, DRAG,
DUPLICATE, END, ENHANCE, EXECUTE, EXPORT, FIND, FRAGMENT, GROUP, IMPORT,
JOIN, LOAD, LOOP, MACRO, MIRROR, MOVE, NEW, OPEN, PASTE, QUIT, RESET, RETURN,
REVOLVE, ROTATE, RUN, SAVE, SCRIPT, SELECT, SET, SIZE, SKEW, START, STEP, STOP,
STRETCH, SWEEP, TRANSFORM, TRANSLATE, TWIST, UNGROUP

Qualifier ALL, ANGLE, BRAID, BRAID_LITZE, CABLE, CABLE_BLOCKMODEL, CHAIN, CLUSTER,
COLLECTION_LINE_ARC, CONTOUR, CONTOUR_LINE_ARC, CONTROLSYSTEM_AUTO,
CROSSSECTION, DIALOG, DIAMETER, ELEMENT, ELEMENTS, FIBRE, FIELD, FILE,
FIXPOINT, FIXPOINTS, FOR, FORMULA, GRAPHIC, GRID, GROUP_PROPERTY, IACT_RULE,
IF, LINK, MACRO, MODEL, OBJECT, OBJECTGROUP, OBJECTS, OBJECTSUPERGROUP,
OBJGRP_OBJGRP, POINT, POINT_CURVE, POLYLINE, POS, POS_X, POS_Y, POSITION,
PREFERENCE, PROFILE, PROGRAM, PROPERTY, PROPULSION, RADIUS, RECORD,
RECORDING, RESOLUTION, SECTION, SIMULATION, SPRING, SPRING_SPIRAL, STATE,
STRAND, STRAND_COMPLEX, SUPERGROUP_PROPERTY, TUBE_LINE, VALUE, WHILE,
WINDOW, WIRE_HELIX, WIRE_LINE, WIRE_RING

Parameter ABSOLUTE, ACTIVE, ALIGNED, ALL, ANGLE, ANGLE_MAX, ANGLE_MIN, ANGLE_ROTATION,
ANGULAR_VELOCITY, ARC, ARC2, ARROW, ASK, AUTOMATIC, AUTONOM, AXIAL_ONLY,
BENDING, BENDING_STRENGTH, BEVEL, BREAK_DRAW_OUT, BREAKUP, BUTTON, C,
C_DAMPING, C_FRICTION_DYNAMIC, C_FRICTION_STATIC, C_GLUE, C_INTERACT_LIN,
C_INTERACT_QUAD, C_LINK, C_VISCOSITY, CABLE_CORRECTIONS, CANCEL, CIRCLE,
CIRCLE, COLOR, COLOR_RGB, COLOR_STD, COLORING, COMPRESSION, CONE, CONE,
CONSTANT, CONTOUR, CONTROL, CORNER, CREATE_CABLE, CREATE_FIELD,
CREATE_OBJECT, CREATE_PROPULSION, CROSSING, CTLSYSTEM,
CTLSYSTEM_COMPLEX, CTLSYSTEM_SIMPLE, CTR120, CUBIC, CUBOID, CYCLE,
CYLINDER, DATABASE, DECORATIVE, DEFAULT, DELTA, DENSE, DENSITY, DIAMETER,
DIRECTION, DIRECTION_BUTTON_NEG, DIRECTION_BUTTON_POS,
DIRECTION_CONTROL, DIRECTION_FUNCTION, DIRECTION_INTERFACE,
DIRECTION_MAX, DIRECTION_MIN, DISTR_AUTO, DISTR_FUNCTION,
DISTR_REMOVEMARK, DISTR_SETMARK, DISTR_SHIFTMARK, DISTR_STEPIN,
DISTR_STEPOUT, DISTR_STOP, DURATION, E_MODUL, EDIT_FIELD, EDIT_LINK,
EDIT_OBJECT, EDIT_PROPULSION, ELASTIC, END, END_OF_WIRE, ENDPOINT, EXCL120,
EXTERNAL, EXTRUSION, FACET, FACTOR, FALSE, FILENAME, FIRST_LAST, FORCE,
FORCE_EXT, FREE, FRICTION, FRICTION_UNILATERAL, FUNCTION, FUNCTIONAL, GEAR,
GLOBAL, GLUE, GLUE_RANGE_FACTOR, GRAVITATION, GRID_ROT_CONTOUR,
GROUP_NR, GROUPED, HELICAL, HELIX, HORIZONTAL, IACT_CYCLE_CALC_PERIOD,
IACT_DEPTH_LIMIT_ACTIVE, IACT_DEPTH_LIMIT_GRID_ACTIVE,
IACT_DEPTH_LIMIT_GRID_VALUE, IACT_DEPTH_LIMIT_MSG, IACT_DEPTH_LIMIT_VALUE,
IACT_OBJSIZE_SECURITY_FAC, IMPORT_POLYLINE, INPLACE, INTERACT,
INTERACT_CONTROLPOINT, INTERACT_DIRECTION, INTERACT_MEMBER,
INTERACT_METHOD, INTERACT_MODE, INTERACT_RULES, INTERACTIVE, INTERFACE,
INTERNAL, INUSE, JOYSTICK, KEYBOARD, LAST_GROUP_NR, LAST_OBJECT,
LAST_SUPERGROUP_NR, LEAF, LENGTH, LINE, LINE_ARC, LINE_SEGMENTS, LINEAR,
LINK, LOCAL, LONG_CONTOUR_OBJECT, MASS, MATERIAL, MATERIAL_MODEL,
MATERIAL_PARAM, MAX, MIDPOINT, MODE, MODEL_SCALE, MODEL_SIZE_FAC_OPENGL,
MOMENT_BENDING, MOMENT_FORCE_EXT, MOMENT_FRICTION, MOMENT_INERTIA,
MOUSE, MOVE_MATRIX, NAME, NEGATIVE, NEUTRAL, NEW_GROUP_NR,
NEW_SUPERGROUP_NR, NO, NO_ACTION, NO_INTERACTION, NONE, NORM_DIRECTION,
NORM_VECTOR, NORMAL, NORMALDIRECTION, NORMALVECTOR, NUMBER_AUTO,
NUMBER_ELEMENTS, NUMBER_FIX, OBJECTNAME, OFF, OK, ON, OVERLOAD_ACTION,
PARTICLE_SPHERE, PASSIVE, PERCENT, PI, PLANE, PLASTIC, POINT, POLYGON,
POLYLINE, POSITION, POSITIVE, PRISM, PRISM_LINE_ARC, PRISM_QUAD_STRIP,
QUAD_STRIP, RADIAL_ONLY, REAL_WORLD, RECT, RELATIVE, RESTRICTION, RING,
ROTATION, ROTATION_LOCKED, ROUND, SCREEN_LAYOUT, SCREEN_WORLD,
104

SELECTION, SHAPE, SIGNAL, SIM_MEMBER, SIMPLE, SINGLE, SPACE, SPECIFIC, SPHERE,
STANDARD, START, STATE, STRAIN_LIMIT, STRENGTH_CALC, STRENGTH_MIN,
STRENGTH_ULTIMATE, SUPERGROUP_NR, SYMBOL, SYMBOL_LENGTH, T, TENSION,
THICKNESS, TIME, TIMESTEP_MAX, TORSION, TORUS, TORUS_SEGMENT,
TORUS_SEGMENT_2, TRANSPARENCY, TRIGGER, TRIGGER_BUTTON,
TRIGGER_CONTROL, TRIGGER_COUNTER, TRIGGER_DELAY, TRIGGER_FUNCTION,
TRIGGER_INTERFACE, TRIGGER_MAX, TRIGGER_STATE, TRIGGER_TIME, TRIGGER-
MODE, TRUE, TUBE, TUBE_SEGMENT, TUBE_SURFACE, TYPE, TYPE_SHEET_METAL,
TYPE_STRIPES, TYPE_UNIFORM_PLATE, U_BREMSE, UNLIMITED, UNUSED, VALUE,
VALUE_BUTTON_NEG, VALUE_BUTTON_POS, VALUE_CONTROL, VALUE_FORCE,
VALUE_FUNCTION, VALUE_INTERFACE, VALUE_MAX, VALUE_MIN, VELOCITY, VERTICAL,
VISCOSITY, VISCOSITY_RANGE, VISIBILITY, VOLUME, WIREFRAME, X, XY, Y, YES, Z

Physical Variables und
ihre Abkürzungen

A, ACCELERATION, AM, ANG, ANG_ROT, ANGLE, ANGLE_ROTATION,
ANGULAR_ACCELERATION, ANGULAR_MOMENTUM, ANGULAR_VELOCITY, BETA, C,
CENTER_MASS, CM, CYCLE, D, DIR, DIRECTION, DISTANCE, DUR, DURATION, E_KIN,
E_KIN_TOT, E_ROT, E_ROT_TOT, E_TOT, EKIN, EKIN_TOT, EROT, EROT_TOT, ETOT, F,
F_EXT, F_IACT, FORCE, FORCE_EXT, FORCE_INTERACTION, LEN, LENGTH, M, M_EXT,
M_FRICTION, M_TOT, MOMENT_FORCE, MOMENT_FORCE_EXT, MOMENT_FRICTION,
MOMENTUM, MOMENTUM_TOT, OMG, P, POS, POSITION, T, TIME, TRG_COUNTER,
TRG_DELAY, TRG_STATE, TRG_TIME, TRIGGER_COUNTER, TRIGGER_DELAY,
TRIGGER_STATE, TRIGGER_TIME, V, VELOCITY

KoordinatenX, Y, Z
105

	Inhalt
	Sprache 8
	Rohdaten 19
	Primitivkörper 27
	Eigenschaften (Primitives) 38
	Objekt-Interaktion 47
	Variablen (Primitives) 51
	Operationen an Primitives 58
	Links 63
	Fixpunkte 69
	Gruppeneigenschaften 71
	Materialmodelle 74
	Kontrollsysteme 79
	Uebergeordnete Eigenschaften 82
	Halbfabrikate 84
	Uebersicht ‘Macro Language’ in alphabetischer Reihenfolge 88
	Uebersicht Macro Language nach Funktionsgruppen 94
	Kontrollsystem Sprache 102
	Reservierte Worte 104

	Sprache
	Einführung
	Nomenklatur
	Sprachaufbau
	Anweisung (statement)
	Kommentare (comments)
	Gross- und Kleinschreibung
	Objekt Referenz (object reference)
	Das Einheitensystem
	Ein script öffnen und ausführen
	FIGURE 1. Eine Fehlermeldung nach der Auslösung des Menu-Befehls ‘Execute’
	FIGURE 2., und die Programmlinie welche den Fehler verursacht hat, angezeigt im Kopfteil des Macro-Windows (gelbe Linie)

	Ausdrücke (expressions)
	Bedingte Anweisungen (conditional statements)
	Syntax:
	Beispiel:
	Schleifen (Loops)

	Syntax
	Syntax
	Beispiel
	Funktionen

	mathematische Funktionen
	Trigonometrische Funktionen
	Bool’sche Funktionen
	Beispiel:
	Bemerkungen
	Operatoren
	TABLE 1. Operatoren

	Operatoren Rangfolge
	TABLE 2. Rangfolge der Ausführung

	Beispiel
	Eine spezielle Variable

	Syntax
	Syntax
	sonar script Limits
	TABLE 3. sonar script limits

	Rohdaten
	Einführung
	Point
	Makro
	Beschreibung
	Line

	Makro
	Beschreibung
	Arc

	Makro
	Beschreibung
	Circle

	Makro
	Beschreibung
	Polygon (konvex)

	Makro
	Beschreibung
	Beispiel
	Polyline

	Makro
	Beschreibung
	Quadstrip

	Makro
	Beschreibung
	Beispiel
	Rohdaten Selektieren

	Makro
	Beschreibung
	Rohdaten Löschen

	Makro
	Beschreibung
	Makro
	Makro
	Beschreibung
	Rohdaten Gruppieren

	Makro
	Beschreibung
	Makro
	Beschreibung
	Rohdaten für ein Zahn- oder Kettenrad

	Makro
	Beschreibung
	Rohdaten in Konturen umwandeln

	Makro
	Beschreibung
	Makro
	Rohdaten in eine Polyline umwandeln

	Makro
	Beschreibung
	Rohdaten bewegen

	Makro
	Beschreibung
	Bemerkung
	Rohdaten Importieren

	Makro
	Beschreibung
	Makro
	Beschreibung
	syntax
	Beschreibung
	Rohdaten eine Orientierung geben

	Beschreibung
	Syntax
	Beispiel

	Makro

	Primitivkörper
	Einführung
	1. Den Körper zuerst in der Nulllage definieren (ohne Drehungen und ohne Translationen)
	2. Den Körper mit mehreren einzelnen Drehungen um jeweils eine Achse in die richtige Drehlage bringen.
	3. Den Körper an die Raumposition verschieben (Translation)

	Sphere (Kugel)
	Makro
	Beschreibung
	Makro 2 (im Basismodul ev. nicht vorhanden)
	Cylinder (Zylinder)

	Makro 1
	Beschreibung
	1. Erzeugung eines Zylinders mit der Zylinderachse auf der z-Achse. Der Schwerpunkt des Zylinders befindet sich im Ursprung.
	2. Ausgehend von dieser Raumlage wird der Zylinder um die gegebenen Winkel um die drei Koordinatenachsen gedreht, und zwar in der Reihenfolge x, y, z. Der Schwerpunkt des Zylinders befindet sich anschliessend immer noch im Ursprung
	3. Der Zylinder wird unter Beibehaltung seiner aktuellen Drehlage translatorisch an seinen Bestimmungsort x0, y0, z0 verschoben.

	Makro 2
	Beschreibung
	1. Die beiden Punkte (x1, y1, z1) und (x2, y2, z2) definieren die Zylinderachse. Es wird ein Zylinder mit dem Radius R um die gegebene Achse gelegt. Die beiden kreisförmigen Endscheiben des Zylinders haben ihre Kreiszentren in den beiden gegebenen P...
	Zylinder mit abgerundeten Kanten

	Makro
	Beschreibung
	Kegelstumpf, Kegel

	Makro 1
	Beschreibung
	1. Erzeugung eines Kegelstumpfes mit der Kegelachse auf der z-Achse. Der Kegel zeigt mit seiner Spitze in Richtung positive z-Achse. Das Zentrum des Kegelstumpfes befindet sich im Ursprung. Das Zentrum ist allerdings nicht mit dem Schwerpunkt identis...
	2. Ausgehend von dieser Raumlage wird der Kegelstumpf um die gegebenen Winkel um die drei Koordinatenachsen gedreht, und zwar in der Reihenfolge x, y, z. Das Zentrum des Kegelstumpfes befindet sich anschliessend immer noch im Ursprung
	3. Der Kegelstumpf wird unter Beibehaltung seiner aktuellen Drehlage translatorisch an seinen Bestimmungsort x0, y0, z0 verschoben.

	Makro 2
	Beschreibung
	1. Die beiden Punkte (x1, y1, z1) und (x2, y2, z2) definieren die Kegelachse. Es wird ein Kegelstumpf mit den Radien R und r um die gegebene Achse gelegt. Die beiden kreisförmigen Endscheiben des Kegelstumpfes haben ihre Kreiszentren in den beiden g...
	Rohr

	Makro
	Beschreibung
	1. Erzeugung eines zylindrischen Rohrs mit der Rohrachse auf der z-Achse. Der Schwerpunkt des Rohrs befindet sich im Ursprung.
	2. Ausgehend von dieser Raumlage wird das Rohr um die gegebenen Winkel um die drei Koordinatenachsen gedreht, und zwar in der Reihenfolge x, y, z. Der Schwerpunkt des Rohrs befindet sich anschliessend immer noch im Ursprung
	3. Das Rohr wird unter Beibehaltung seiner aktuellen Drehlage translatorisch an seinen Bestimmungsort x0, y0, z0 verschoben.
	Rohr Segment

	Makro
	Beschreibung
	Rohr Oberfläche (Tube Surface)

	Makro
	Beschreibung
	Cuboid (Quader)

	Makro 1
	Beschreibung
	Makro 2
	Beschreibung
	Torus

	Makro
	Beschreibung
	Torus Segment

	Makro
	Beschreibung
	Anwendung
	Prisma (konvex)

	Makro
	Beschreibung
	Beispiel
	Prisma (quadstrip)

	Makro
	Beschreibung
	Prisma (Line-Arc)

	Makro
	Beschreibung 1
	Beispiel
	FIGURE 3. Lasche einer Maschinen- oder Zahnkette

	Beschreibung 2
	Twisted Prism (verdrehtes Prisma)

	Makro
	Beschreibung
	Plane (Ebene)

	Makro
	Beschreibung
	Rotational (Rotationskörper)

	Makro
	Beschreibung
	FIGURE 4. eine typische Anwendung eines Rotationskörpers ist ein Rad (hier ein Seilrad)
	Partieller Rotationskörper (Grid Segment)

	Makro
	Beschreibung
	Beispiel
	FIGURE 5. Das vom vorangehenden sonar Script erzeugte Rohdaten Grid und sein Aussehen nach der Weiterverarbeitung mit der Funktion Import Grid(). Beachten Sie, dass in der 3D-Darstellung rechts nur diejenigen Flächen in Erscheinung treten, welche vo...

	Normalenvektoren der Elemente
	Weiterverarbeitung des Rohdaten-Grids
	Grid Surface

	Makro
	Beschreibung
	Grid Nachbearbeitung (Hilfsfunktionen)

	Makro
	Beschreibung
	Makro
	Beschreibung
	Sweep

	Makro
	Beschreibung:

	Eigenschaften (Primitives)
	Ueberblick
	Physik
	Interaktion
	Allgemein
	Winkelgeschwindigkeit (angular velocity)

	Syntax 1
	Syntax 2
	Beschreibung
	Beispiel
	Dichte (density)

	Syntax
	Beschreibung
	Beispiel
	Externe Kraft (external force)

	Syntax
	Beschreibung
	Beispiel
	Unilaterale Reibung (unilateral friction)

	Syntax
	Beschreibung
	Beispiel
	Masse (mass)

	Syntax
	Beschreibung
	Ext. Drehmoment (ext. moment of force)

	Syntax
	Beschreibung
	Beispiel
	Trägheitsmoment (moment of inertia)

	Syntax
	Beschreibung
	Beispiel
	Syntax
	Beschreibung
	Rotationsachsen einfrieren

	Syntax
	Beschreibung
	Beispiel
	Räumlich fixierte Objekte

	Syntax
	Beschreibung
	Beispiel
	Geschwindigkeit (velocity)

	Syntax
	Beschreibung
	Zylinder-Facette (bevel)

	Syntax
	Beschreibung
	Objekt Farbe

	Syntax
	Beschreibung
	Gruppenzugehörigkeit

	Syntax
	Beschreibung
	Objektname

	Syntax
	Beschreibung
	Sichtbarkeit

	Syntax
	Beschreibung
	Wireframe

	Syntax
	Beschreibung

	Objekt-Interaktion
	Interaktionsregel Erzeugen
	Makro 1
	Makro 2
	Beschreibung
	Interaktionskonstante (interaction const.)

	Syntax
	Beschreibung
	Interaktionspunkte

	Syntax
	Beschreibung Chladnische Klangfiguren entstehen auf schwingenden Blechen mit aufgestreutem Sand
	Beispiel
	FIGURE 6. Zahnkettentrieb mit gestapelten Laschen
	FIGURE 7. Die Interaktionspunkte über und unter den Bohrungen einzelner Laschen welche den Ort der seitlichen Interaktion zu den Nachbarlaschen vorgeben.
	Interaktionsrichtung einschränken

	Syntax
	Beschreibung
	Vergleich zu ‘Interaction Rule by Name’
	Interaktionsmethode (interaction method)

	Syntax
	Beschreibung
	Interaktionsart (interaction mode)

	Syntax
	Beschreibung

	Variablen (Primitives)
	Ueberblick
	Voraussetzungen
	Geometrie
	TABLE 4.

	Physik
	TABLE 5.

	Allgemein
	TABLE 6.
	Position

	Syntax
	Beschreibung
	Beispiel
	Schwerpunkt

	Syntax
	Beschreibung
	Distanz, Abstand

	Syntax
	Beschreibung
	Beschleunigung

	Syntax
	Beschreibung
	Winkelbeschleunigung

	Syntax
	Beschreibung
	Kraft

	Syntax
	Beschreibung
	Kollisionskraft

	Syntax
	Beschreibung
	Drehmoment

	Syntax
	Externes Drehmoment

	Syntax
	Beschreibung
	Widerstandsmoment

	Syntax
	Beschreibung
	Geschwindigkeit

	Syntax
	Beschreibung
	Winkelgeschwindigkeit

	Syntax
	Beschreibung
	Impuls

	Syntax
	Beschreibung
	Gesamtimpuls

	Beschreibung
	Drehimpuls

	Syntax
	Beschreibung
	Energie

	Syntax
	Beschreibung
	Zeit

	Syntax
	Beschreibung
	Zyklus

	Syntax
	Beschreibung
	T rigger

	Operationen an Primitives
	Selektieren / Überblick
	Syntax (Objekte)
	Syntax (Rohdaten)
	Syntax (Fixpunkte)
	Syntax (Links)
	Beschreibung
	eine weitere Referenzierungsart

	Beispiel
	Beschreibung
	Syntax
	Beschreibung
	Bewegen (Translation) / Überblick

	Syntax (Objekte)
	Syntax (Objectgroup)
	Syntax (Objectsupergroup)
	Syntax (Grid)
	Beschreibung
	Bewegen (Rotation)

	Syntax (Objects)
	Syntax (Objectgroup)
	Syntax (Objectsupergroup)
	Syntax (Grid)
	Beschreibung
	Bewegen (mit Objektmatrix)

	Syntax (Rohdaten)
	Beschreibung
	Kombinierte Bewegung

	Syntax
	Beschreibung
	Löschen

	Makro
	Beschreibung
	Makro
	Beschreibung
	Duplizieren

	Syntax (in place)
	Syntax (displaced)
	Beschreibung

	Links
	Erzeugen
	Syntax Normaler Link
	Beschreibung
	Syntax Biege- und Torsions-Link
	Beschreibung
	Beispiel
	weitere Erzeugungsmethoden

	Syntax
	Beschreibung
	Syntax
	Beschreibung
	Syntax
	Beschreibung
	Ganze Objektgruppen Linken

	Syntax
	Beschreibung
	Link-Konstante setzen

	Syntax
	Beschreibung
	Syntax
	Beschreibung
	Beispiel
	Syntax
	Beschreibung
	Eigenschaften setzen

	Syntax
	Beschreibung
	Biegefestigkeit

	Syntax
	Beschreibung
	Syntax
	Beispiel

	Fixpunkte
	Erzeugen
	Makro
	Beschreibung
	Selektieren

	Makro
	Beschreibung
	Links an Fixpunkten

	Makro 1
	Makro 2
	Beschreibung

	Gruppeneigenschaften
	Ueberblick
	Beispiel
	Gruppennummer Erzeugen

	Syntax
	Beschreibung
	Einzelne Objekte zu Gruppe hinzufügen

	Syntax
	Beschreibung
	Gruppe zu Supergruppe hinzufügen

	Syntax
	Beschreibung
	Gruppeneigenschaften benutzen

	Ueberblick

	Materialmodelle
	Ueberblick
	FIGURE 8. Der Dialog ‘Edit Material (Stress/Strain-Variables)’

	Materialmodell
	Syntax
	Beschreibung
	Beispiel
	Elastizitätsmodul (young modulus)

	Syntax
	Beschreibung
	Beispiel
	Streckgrenze (yield strength)

	Syntax
	Beschreibung
	Bruchspannung

	Syntax
	Beschreibung
	Dehngrenze (strain limit)

	Syntax
	Beschreibung
	Aktion bei Ueberlast

	Syntax
	Beschreibung
	Unbeschränkte Dehnung

	Syntax
	Beschreibung
	Funktionsparameter
	FIGURE 9. Der Dialog ‘Edit Material (Stress/Strain-Function)’

	Syntax
	Vergleichspannungshypothese (yield model)

	Kontrollsysteme
	Punktkurve
	Syntax
	Beschreibung
	Syntax
	Beschreibung
	Beispiel
	Automatisches Kontrollsystem

	Syntax
	Beschreibung
	Zwangsbewegung (constraint movement)

	Beschreibung
	Pik = P1k + ((Tik-T1k)/(T2k-T1k))*(P2k-P1k) (EQ 1)

	Uebergeordnete Eigenschaften
	Gravitationsfeld Erzeugen
	Syntax
	Beschreibung
	Beispiel
	globale Zustände ein/ausschalten

	Syntax
	Beschreibung
	Syntax
	Beschreibung
	globale Werte setzen

	Syntax
	Beschreibung

	Halbfabrikate
	Seil (Blockmodell)
	Syntax
	Beschreibung
	Streckung : K1 = E * Ae / eL (EQ 2)
	Biegung : K2 = p * d4 * E / (64 * eL) (EQ 3)
	Torsion : K3 = p * d4 * G * / (32 * eL) (EQ 4)
	Biegsamer Draht, Drahtfeder

	Syntax
	Beschreibung
	Biegsamer Drahtring
	Blattfeder

	Syntax
	Beschreibung
	physikal. Zug- oder Druckfeder

	Syntax Zugfeder
	Syntax Druckfeder
	Beschreibung
	Biegsames Rohr

	Syntax
	Beschreibung
	Schäkel (shackle)

	Uebersicht ‘Macro Language’ in alphabetischer Reihenfolge
	Bemerkung

	Uebersicht Macro Language nach Funktionsgruppen
	Rohdaten
	Rohdaten Import
	Rohdaten Erzeugen
	Grid Functions
	Rohdaten Eigenschaften
	Rohdaten Verwalten
	Rohdaten Bewegen
	Primitives

	Primitives Erzeugen
	Fixpunkte Erzeugen
	Spezielle Objekte
	Primitives Befestigen
	Primitives Verwalten
	Primitives Selektieren
	Primitive-Eigenschaften Setzen
	Primitives Bewegen
	Primitive-Gruppen und Clusters

	Seile
	Biegsames Rohr
	Biegsame Drähte
	Federn
	Objektgruppe Bewegen
	Allgemeine Funktionen
	Objektgruppen- Eigenschaften Setzen
	Group- and Supergroup Operationen

	eine neue Gruppen-Nr erzeugen
	einzelne Objekte zu einer Gruppe hinzufügen
	eine Gruppe von Objekten zu einer Supergroup hinzufügen
	Links

	Links Erzeugen
	Control Systems

	Punkt Kurven
	Kontrollsysteme
	Allg. Verwaltungsfunktionen
	Globale Eigenschaften
	Simulations-Steuerung
	Programm Steuerung

	Bedingte Ausführung
	Schleifen
	Objekt Referenz festlegen
	Modul Cable

	Zopf
	Litzenzopf
	Seil
	Litze
	Komplexe Litze
	Drahthelix
	Funtionen
	Modul Chain
	Modul Profile

	Profile Erzeugen
	Funktionen
	Modul Particles
	Konstanten

	iActMethodIdx (interaction method)
	iActModeIdx (interaction mode)
	Bool’sche Werte
	kartesische Koordinaten
	Spezifizierung von Link- Kombinationen

	Kontrollsystem Sprache
	Ueberblick
	Beispiel
	1. Es gibt sog. bedingte Anweisungen welche als Resultat einen bool’schen Wert (true/false) liefern und dafür sorgen, dass nachfolgende Anweisungen nur unter gewissen Bedingungen ausgeführt werden (A).
	2. Und es gibt sog. Zuweisungen welche einer bestimmten Objektvariablen einen berechneten oder gegebenen Wert zuweisen (B).
	Grammatik

	Backus Naur Form (BNF)

	Reservierte Worte
	Command
	Qualifier
	Parameter
	Physical Variables und ihre Abkürzungen
	Koordinaten

